

AIR MEASUREMENT SERVICES, INC.

Horizon Test #: W07-042-FRC

Date Tested: April 21, 2005 Report Date: May 26, 2005

Revision Number: 0

#### ANNUAL EMISSIONS TEST OF LANDFILL GAS FLARE #3 BRADLEY LANDFILL

Permit to Operate Number: F67268 Facility ID Number: 050310

#### Prepared for:

Waste Management Recycling and Disposal Services of California, Inc. 9081 Tujunga Avenue, 2nd Floor Sun Valley, California 91352

#### Prepared by:

Horizon Air Measurement Services, Inc. 996 Lawrence Drive, Suite 108 Newbury Park, California 91320

#### Regulatory Agency:

South Coast Air Quality Management District 21865 East Copley Drive Diamond Bar, California 91765

Robert D. Carrier
Project Manager

Richard J. Vacherot Technical Director

| Medical Control of the Control of th |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Anna-Land places                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bookstonesses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (c) (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - American Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| E COMPANIE C |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



May 26, 2005

Mr. John Workman Waste Management 25772 Springbrook Road Saugus, California 91350

Dear Mr. Workman:

Please find enclosed three copies of the final report entitled "Annual Emissions Test of Landfill Gas Flare #3 Bradley Landfill."

If you have any questions please call me at (805) 498-8781.

Sincerely,

HORIZON AIR MEASUREMENT SERVICES, INC.

Robert D. Carrier

Project Manager

RC:lmb

cc: Mr. Andrew Washington, The Shaw Group, Inc.

| <br>• | · <u></u> · | Control Description of the Control o |
|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |             | 100 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |             | White trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |             | (2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |             | de la constantina de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |             | LOCAL TO COMME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |             | Because of the second of the s |
|       |             | Bulletin and American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |             | boot managed and a second a second and a second a second and a second  |
|       |             | Commence of the commence of th |
|       |             | Evine 1 and Parketter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |             | CONTRACTOR OF THE CONTRACTOR O |
|       |             | em da nocetu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |             | Para Andrewson and A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |             | Participation of the Control of the  |
|       |             | enconnectal en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |             | Control II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |             | Produceracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# TABLE OF CONTENTS

| 1. INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 'age 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2. SUMMARY OF RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | age 3  |
| 3. FLARE DESCRIPTION AND OPERATION p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | age 5  |
| 3.1 Flare Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| 3.2 Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| 3.3 Process Operation During Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | age 5  |
| 4. SAMPLING/ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Page 7 |
| 4.1 Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| 4.1.1 Flare Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | age 8  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 8 |
| 4.3 Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | age 9  |
| 4.3.2 Outlet - SCAQMD Method 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 4.4 Particulate Matter (Outlet) - SCAQMD Method 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| 4.5 Oxides of Nitrogen, Carbon Monoxide, Carbon Dioxide, Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | age 7  |
| (Continuous Emissions Monitoring) - SCAQMD Method 100.1 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | age Q  |
| 4.6 Hydrogen Sulfide (H <sub>2</sub> S), and C <sub>1</sub> - C <sub>3</sub> Sulfur Compounds (Inlet) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uge )  |
| (11/2), the of one of the original of the orig | ge 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge 10  |
| 4.7.2 Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _      |
| 4.8 Total Non Methane Hydrocarbons, Methane, Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ge 10  |
| and Carbon Monoxide Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aa 11  |
| 4.8.1 Inlet - SCAQMD Method 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 4.8.2 Outlet - SCAQMD Method 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ge 11  |
| 5. RESULTS DISCUSSION Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge 12  |
| APPENDIX A - Sampling and Analytical Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| APPENDIX B - Computer Printout of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| APPENDIX C - Laboratory Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| APPENDIX D - Field Data Sheets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| APPENDIX E - Calibration Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| APPENDIX F - Strip Chart Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| APPENDIX G - Process Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| APPENDIX H - Permit to Operate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |

| 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The contract of the contract o |
| get the curion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| breeconsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Logicometrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Province or company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Estate State |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Eurosovorana 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| and terrorenteed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| And the second of the second o |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Construction of the Construction of the Const |
| (management)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### 1. INTRODUCTION

Under Condition No. 19 of Permit to Operate No. F67268, Waste Management Recycling and Disposal Services of California, Inc. is required to conduct source test on a landfill gas flare (Flare #3) located at Bradley Landfill and Recycling Center. Horizon Air Measurement Services, Inc. (Horizon) had been retained for this purpose.

All testing/analytical procedures conformed to those outlined in Horizon Test Plan No. W07-042-TP, which had been approved by the South Coast Air Quality Management District (SCAQMD). Horizon completed the source testing on April 21, 2005.

Two samples were taken for each parameter of interest (Table 1-1) with the exception of trace organic compounds and reduced sulfur compounds, for which only one sample per location was collected. The results of the testing program, with respect to Permit limits, are provided in Section 2 - Results Summary.

A brief description of the flare and flare operating conditions during testing is provided in Section 3. Section 4 provides a summary of sampling/analytical procedures utilized. Section 5 provides a more detailed results summary/discussion.

..... National Section 1 Parameter State Patron activised terror control per control of 

# Table 1-1 Compounds of Interest Waste Management - Bradley Landfill Flare #3 April 21, 2005

| PARAMETER                                                                             | LOCATION | METHOD                             | NUMBER OF<br>SAMPLES PER<br>SOURCE |
|---------------------------------------------------------------------------------------|----------|------------------------------------|------------------------------------|
| Total Non Methane Hydrocarbons                                                        | Inlet    | SCAQMD Method 25.1                 | 2                                  |
|                                                                                       | Outlet   | SCAQMD Method 25.3                 | 2                                  |
| Reduced Sulfur Compounds (C <sub>1</sub> -C <sub>3</sub> ) Including H <sub>2</sub> S | Inlet    | SCAQMD Method 307.91<br>Equivalent | 1                                  |
| Speciated Organic Compounds                                                           | Inlet    | Whole Air/GC-MS (1150 list)        | 1                                  |
|                                                                                       | Outlet   | Whole Air/GC-MS (1150 list)        | 1                                  |
| Particulate Matter                                                                    | Outlet   | SCAQMD Method 5.1                  | 2                                  |
| Oxides of Nitrogen                                                                    | Outlet   | SCAQMD Method 100.1                | 2                                  |
| Carbon Monoxide                                                                       | Inlet    | SCAQMD Method 25.1                 | 2                                  |
|                                                                                       | Outlet   | SCAQMD Method 100.1                | 2                                  |
| Oxygen                                                                                | Inlet    | SCAQMD Method 25.1                 | 2                                  |
|                                                                                       | Outlet   | SCAQMD Method 100.1                | 2                                  |
| Carbon Dioxide                                                                        | Inlet    | SCAQMD Method 25.1                 | 2                                  |
|                                                                                       | Outlet   | SCAQMD Method 100.1                | 2                                  |
| Methane                                                                               | Inlet    | SCAQMD Method 25.1                 | 2                                  |
|                                                                                       | Outlet   | SCAQMD Method 25.3                 | 2                                  |
| Flow Rate/Temperature                                                                 | Inlet    | SCAQMD Method 2.3                  | 2                                  |
|                                                                                       | Outlet   | SCAQMD Method 5.1/Calculated       | 2                                  |
| Moisture                                                                              | Outlet   | SCAQMD Method 5.1                  | 2                                  |
|                                                                                       | Inlet    | SCAQMD Method 4.1                  | 2                                  |
| BTU Content                                                                           | Inlet    | SCAQMD Method 25.1                 | 2                                  |

| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WITH THE PROPERTY OF THE PROPE |
| a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Emergence of the control of the cont |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| generating generating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Parasis and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| To the second se |
| EAST-VESTER STATE OF THE STATE  |
| Remonatories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| parameter and pa |
| gentioning<br>convolutioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mwww.cc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| generation and a property of the control of the con |
| permitted on the land of the l |
| Emiliaria mang<br>Senitaria mang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Basic Announce of State of Sta |
| FERNANCIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| enorgenation to the control of the c |

#### 2. SUMMARY OF RESULTS

The results of the testing program conducted on April 21, 2005 are provided in Table 2-1. Emission rates of oxides of nitrogen, carbon monoxide, total particulate matter, total non-methane organics and total sulfur compounds (as SO<sub>2</sub>) were within Permit limitations. A more detailed discussion of results is provided in Section 5.

Recovered and The second bon made No. The second second describerations. Etter Constant for several poly processor and

#### Table 2-1

#### Summary of Results Waste Management - Bradley Landfill Flare #3 April 21, 2005

| Parameter                                      | Measured Emission Rate*        | Permitted Emission Rate*                                |
|------------------------------------------------|--------------------------------|---------------------------------------------------------|
| Oxides of Nitrogen, as NO <sub>2</sub>         | 1.57 lb/hour<br>0.049 lb/MMBtu | 2.58 lb/hour<br>0.06 lb/MMBtu                           |
| Total Particulate Matter                       | 0.64 lb/hour                   | 1.31 lb/hour                                            |
| Carbon Monoxide                                | <1.06 lb/hour                  | 2.37 lb/hour                                            |
| Total Non Methane Organics, as CH <sub>4</sub> | 0.079 lb/hour                  | 0.66 lb/hour                                            |
| Total Non Methane Organics, as C <sub>6</sub>  | 0.80 ppm @ 3% O <sub>2</sub>   | 20 ppm C <sub>6</sub> @ 3% O <sub>2</sub> (Rule 1150.1) |
| Total Sulfur Compounds, as SO <sub>2</sub>     | 0.55 lb/hour                   | 3.16 lb/hour                                            |

Measured emission rates shown are the average of two test runs (samples).

From facility flow rate meter.

Determined using SCAQMD Method 2.3.

|   | FERROMETER STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | NAME OF THE PROPERTY OF THE PR |
|   | A Commence of the Commence of  |
|   | to the second se |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | A Comment of the Comm |
|   | manines/www.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | ter concerned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Communication of the Communica |
|   | goannuveri<br>boanneveri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Economico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | ä. <b>.2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • | Executive services (See Section 1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Statement of the statem |
|   | # Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Recommondation becomes become the second sec |
|   | Parameter and pa |
|   | Procedure of Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | The construction of the co |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Economic and the second |

# 3. FLARE DESCRIPTION AND OPERATION

#### 3.1 Flare Description

The landfill gas flare consists of an insulated steel cylinder 50 feet high and 96 inches inside diameter (see Figure 3-1). Landfill gas flow rate was continuously monitored and recorded on a strip chart by the facility. Flare operating temperature during the test was set at 1600°F. Flare temperature was continuously monitored by the facility.

Condensate flow rate is limited to five gallons per minute. The source test was conducted at a condensate flow rate of approximately 3.6 gallons per minute.

#### 3.2 <u>Sample Location</u>

Flare exhaust samples were obtained from each two ports positioned at right angles, located five feet from the top of the flare and approximately 45 feet above ground level.

Inlet samples were obtained from the 10-inch diameter (ID) landfill gas line supplying the flare 48 inches (4.8 diameters) downstream and 24 inches (2.4 diameters) upstream of any flow disturbance.

### 3.3 <u>Process Operation During Testing</u>

The flare was operating under the following conditions during the source test period:

| 771                         | <u>Run 1</u> | Run 2     |
|-----------------------------|--------------|-----------|
| Flare Temperature -         | 1578 °F      | 1570 °F   |
| Landfill Gas Flow Rate -    | 1939 scfm    | 1976 scfm |
| Condensate Injection Rate - | 3.5 gpm      | 3.7 gpm   |

A facility strip chart of these process parameters is provided in Appendix G, Process Data.

| Nation of the second se |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e constant de la cons |
| the second secon |
| Beginnen and Carl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Notice Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| gararenssud)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Resumencessal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ppetant (149358)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Enclosed State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Paramonenska<br>Paramonenska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Princesson of the Comment of the Com |
| Particularity (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| personana y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (Editional park)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Discourse (Coxy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Emercuscus A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



TOTAL DIAMETER = .96" ID. TOTAL HEIGHT = 50'



Figure 3-1

| New Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| interconnection of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ERANDO DE CONTROL DE C |
| parameters of the state of the  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (c) (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| en ferressenten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Executive services in the service service services in the service service service services in the service service service services in the service service service service services in the service serv |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Managaranan di<br>Managaranan di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| photographic street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| in the second se |
| Mercenny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### 4. SAMPLING/ANALYSES

The sampling/analytical program had been designed to quantify the parameters of interest outlined in Table 1-1.

#### 4.1 Sample Location

#### 4.1.1 Flare Exhaust

At the flare exhaust 24 sample points (12 per diameter), determined in accordance with Method 1, were utilized for the determination of the following compounds:

- Particulate matter
- NO<sub>X</sub>
- CO
- O<sub>2</sub>/CO<sub>2</sub>
- Flow Rate
- Moisture

The exact locations of the sampling points are provided in Appendix D, Field Data Sheets. A description of SCAQMD Method 1 is provided in Appendix A.

One sample points at the center of the stack was utilized for the collection of the following compounds:

- speciated organic compounds
- total non methane hydrocarbons
- methane

| i de Partido Partido Partido Partido (1911) con este partido partido de la Persona Maria de Caldador (1911) de Partido Caldador ( |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commence of the Commence of th |
| i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| i communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| y de la constant de l |
| Managements of the control of the co |
| Enter Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Commenced and American State of State  |
| AND THE PROPERTY AND TH |
| THE STATE OF THE S |
| brancist ordered by the control of t |
| Processory<br>Processory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Executation Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| KARTON TOTAL BENEFIT OF THE PROPERTY OF THE PR |
| Procession of the Procession o |
| Kriston mith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PANANCHAR RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Emmerature (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Firemanness and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Į Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### 4.1.2 Landfill Gas Supply Line

Eight sample points, chosen in accordance with SCAQMD Method 1.1, were used to gather velocity data.

A single sample point was utilized for the collection of the following compounds:

- · total non methane hydrocarbons
- methane
- CO
- CO<sub>2</sub>/O<sub>2</sub>
- reduced sulfur compounds
- speciated organic compounds
- BTU content
- Moisture

#### 4.2 Moisture

#### 4.2.1 <u>Inlet - SCAQMD Method 4.1</u>

Landfill gas moisture content was determined using SCAQMD Method 4.1. Two, one-hour test runs were conducted in conjunction with the outlet particulate and SCAQMD Method 100.1 testing. A description of SCAQMD Method 4.1 is provided in Appendix A.

### 4.2.2 Outlet - SCAOMD Method 5.1

Moisture content of the flare exhaust was determined using SCAQMD Method 4.1 in conjunction with SCAQMD Method 5.1, as detailed in Appendix A.

#### 4.3 Flow Rate

A copy of the source-dedicated on-line flow chart can be found in Appendix G. This chart identifies: landfill gas flow to flare, condensate flow rate to flare and flare stack temperature readings.

| ENTERONMENT OF THE PROPERTY OF | Control of the last of the las |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control of the Contro |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temporal and the control of the cont |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Account of the control of the contro | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| c.d. d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| concording to the control of the con |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EXAMPLE CONTROL OF THE PROPERTY OF THE PROPERT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| City Community of the C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Error traversità de la constanta de la constan |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | North and an artist of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### 4.3.1 Inlet

Landfill gas flow rate was determined in accordance with SCAQMD Method 2.3. A description of SCAQMD Method 2.3 is provided in Appendix A.

#### 4.3.2 Outlet - SCAOMD Method 5.1

The landfill flare flow rate was monitored in conjunction with SCAQMD Method 5.1, as detailed in Appendix A. However, since the flare exhaust velocity was below the applicable limit (0.05 in. WG  $\Delta P$ ) of SCAQMD Method 2.1/5.1, the exhaust flow rate was calculated stoichiometrically based upon the landfill gas composition and stack dilution.

# 4.4 Particulate Matter (Outlet) - SCAOMD Method 5.1

Horizon conducted two, 60-minute test runs on the flare exhaust for particulate matter determination in accordance with SCAQMD Method 5.1 protocol. Twenty-four traverse points were utilized for the collection of particulate matter at the flare exhaust. A description of SCAQMD Method 5.1 is provided in Appendix A. Stack gases were withdrawn through an integral quartz nozzle and probe.

# 4.5 Oxides of Nitrogen, Carbon Monoxide, Carbon Dioxide, Oxygen (Continuous Emissions Monitoring) - SCAQMD Method 100.1

Two, 60-minute test runs were conducted at the flare exhaust. Twenty-four sample points were utilized. All sampling was performed under the guidelines of SCAQMD Method 100.1 as detailed in Appendix A.

| tu en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The state of the s |
| Section 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Constitution of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Commence of the control of the contr |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| generation and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Receivement 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| generalista na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Petroseonicas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Permission of the Permission o |
| de de la constante de la const |
| transcend ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| emman kermananya jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ражения раже                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pordawninen from<br>trimmanno euro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Constraints (Constraints)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Control of  |
| Hencepoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# 4.6 <u>Hydrogen Sulfide (H<sub>2</sub>S), and C<sub>1</sub> - C<sub>3</sub> Sulfur Compounds (Inlet) - SCAQMD Method 307.91 Equivalent</u>

Hydrogen sulfide and  $C_1$  -  $C_3$  sulfur compound samples were collected at the inlet of the flare using the Tedlar bag collection system depicted in SCAQMD Method 25.2 (Appendix A). All system components coming in contact with the landfill gas were Teflon.

Hydrogen sulfide and  $C_1$  -  $C_3$  sulfur compounds were analyzed using a Method 307.91 equivalent by AtmAA, Inc. Equivalency had been formally granted by SCAQMD to AtmAA, Inc. for this Method.

# 4.7 Speciated Organic Compounds - SCAQMD Rule 1150.1 List

#### 4.7.1 Inlet

Speciated organic compounds were collected at the flare inlet of the landfill gas using the Tedlar bag collection system depicted in SCAQMD Method 25.2 (Appendix A). All system components coming in contact with the landfill gas were Teflon or stainless steel. Speciated organic compounds (SCAQMD Rule 1150.1 list) were identified and quantified using GC/MS analytical procedures.

#### 4.7.2 <u>Outlet</u>

Speciated organic compound samples were collected in conjunction with the particulate/CEM testing at the exhaust using the Tedlar bag sampling system depicted in Appendix A. Each sample was then analyzed for speciated organic compounds (SCAQMD Rule 1150.1 list) using GC/MS procedures.

| , mga ga that it regular. Me demogra i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Leversee and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Marketta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Constitution of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Execution with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Herocommunication of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Participan (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Environmental Paris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Management of the state of the  |
| Free Court Free Free Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Accountant to the second secon |
| Methodars was read (green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| promiser pro |
| We continue the state of the st |
| Per la constant de la |

4.8 Total Non Methane Hydrocarbons, Methane, Carbon Dioxide and Carbon Monoxide

# 4.8.1 <u>Inlet - SCAOMD Method 25.1</u>

Total non methane hydrocarbons, methane,  $CO_2$  and CO concentration were determined at the flare inlet from duplicate samples using SCAQMD Method 25.1. A description of SCAQMD Method 25.1 is provided in Appendix A.

# 4.8.2 Outlet - SCAOMD Method 25.3

Duplicate samples were obtained for total non methane hydrocarbon and methane concentration determination. Total non methane hydrocarbons and methane were determined using SCAQMD Method 25.3. A description of SCAQMD Method 25.3 is provided in Appendix A.

| ontopositiva proporto a trongen un federale um s. a um maioritate um experte de en a federale emiserale en constituir de entre en entre en entre en entre en entre |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The state of the s |
| tamento in the state of the sta |
| tunessississississississississississississi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| geometricanity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| panconomia d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| i panemental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T. Communication of the Commun |
| S Economic account                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 164 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| economical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| processory<br>United United                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Entertain Ed Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Processory on the second of th |
| Programment of the Programment o |

#### 5. RESULTS DISCUSSION

Detailed results of the testing conducted on Flare #3 on April 21, 2004 are presented in Table 5-1 and 5-2. Since the flare exhaust velocity was below the applicable range ( $>0.05 \Delta P$  inches water gauge) of SCAOMD Method 2.1, the flare exhaust flow rate for each test run was calculated stoichiometrically based upon the composition of the landfill gas and the exhaust stack dilution. Oxide of sulfur emission rate was calculated based upon the landfill gas total sulfur compound concentration and flow rate (see Appendix B).

| ~ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Note the second  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Management (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - | in the second se |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | like men                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | See acousta a Artesia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | discussion in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Participation of the Control of the  |
|   | Parameter (1979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | potential by the party of the p |
|   | fection and the feet of the fe |
|   | r Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Economic services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | P. Common of the |
|   | (A) participal (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | Activities and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 5-1
Summary of Results
Waste Management - Bradley Landfill
Flare #3
April 21, 2005

|                                              | L     |      | FLARE EXHAUST |   |               |    |        |   |        |   |
|----------------------------------------------|-------|------|---------------|---|---------------|----|--------|---|--------|---|
| Run Number                                   | 1     | 2    | Avg.          |   | 1             |    | 2      |   | Avg.   |   |
| STACK GAS CHARACTERIST                       | ICS   |      |               |   |               |    |        |   |        |   |
| Temperature, degrees F                       | 118   | 129  | 124           |   | 1646          |    | 1601   |   | 1.00   |   |
| Moisture, %                                  | 5.9   | 6.2  | 6.1           |   | 13.0          |    | 1621   |   | 1633   |   |
| Flow Rate, acfm                              | 1803  | 1947 | 1875          |   | 13.0          |    | 13.3   |   | 13.2   |   |
| Flow Rate, dscfm                             | 1521  | 1606 | 1563          |   | 11570         | *  | 10054  |   |        |   |
| Fixed Gases                                  |       | 1000 | 1505          |   | 11579         | τ. | 12274  | * | 11926  | * |
| Oxygen, %                                    | 4.20  | _    | 4.20          |   | 12.11         |    |        |   |        |   |
| Carbon Dioxide, %                            | 28.90 | _    | 28.90         |   | 11.11<br>8.56 |    | 11.15  |   | 11.13  |   |
| Methane, %                                   | 33.95 | _    | 33.95         |   |               |    | 8.89   |   | 8.73   |   |
| BTU Value, Btu/scf                           | 343   | -    | 343           |   | 0.00          |    | 0.00   |   | 0.00   |   |
| EMISSIONS                                    |       |      |               |   |               |    |        |   |        |   |
| Oxides of Nitrogen                           |       |      |               |   |               |    |        |   |        |   |
| ppm                                          | _     |      |               |   |               |    |        |   |        |   |
| ppm @ 3 % O2                                 |       | -    | -             |   | 18.4          |    | 17.9   |   | 18.1   |   |
| lb/hr                                        | -     | -    | -             |   | 33.6          |    | 32.9   |   | 33.2   |   |
| lb/MMBtu                                     | -     | -    | -             |   | 1.546         |    | 1.599  |   | 1.572  |   |
| Carbon Monoxide                              | -     | -    | -             |   | 0.049         |    | 0.048  |   | 0.049  |   |
| ppm                                          |       |      |               |   |               |    |        |   |        |   |
| ppm @ 3 % O2                                 | -     | -    | -             | < | 20            | <  | 20     | < | 20     |   |
| lb/hr                                        | -     | -    | -             | < | 37            | <  | 37     | < | 37     |   |
| lb/MMBtu                                     | -     | =    | -             | < | 1.03          | <  | 1.09   | < | 1.06   |   |
| Total Particulate Matter                     | -     | -    | -             | < | 0.033         | <  | 0.033  | < | 0.033  |   |
| gr/dscf                                      |       |      |               |   |               |    |        |   |        |   |
| lb/hr                                        | -     | -    | -             |   | 0.0035        |    | 0.0088 |   | 0.0062 |   |
| otal Non-Methane Hydrocarbons                | -     | -    | -             |   | 0.35          |    | 0.93   |   | 0.64   |   |
| Reactive Organic Compounds)                  |       |      |               |   |               |    |        |   |        |   |
| ppm, as Methane                              | 2050  |      |               |   |               |    |        |   |        |   |
| lb/hr, as Methane                            | 2058  | -    | 2058          |   | 2.63          |    | -      |   | 2.63   |   |
| ulfur Compounds                              | 8.13  | -    | 8.13          |   | 0.079         |    | _      |   | 0.079  |   |
| -                                            | 00.5  |      |               |   |               |    |        |   |        |   |
| Hydrogen Sulfide, ppm                        | 23.3  | -    | 23.3          |   | 0.50          |    | -      |   | 0.50   |   |
| Total Sulfur, ppm as H2S  exides of Sulfur** | 34.8  | •    | 34.8          |   | -             |    | -      |   | -      |   |
| lb/hr                                        |       |      |               |   |               |    |        |   |        |   |
| 10/01                                        | -     | -    | -             |   | 0.55          |    | _      |   | 0.55   |   |

<sup>\*</sup> Flow Rate calculated stoichiometrically

<sup>\*\*</sup> Calculated from sulfur balance

| Art Court State Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Marie de la companyati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Marie Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (max)) Lastra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Proceedings of the contraction o |
| parameters and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A KAMANANANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| parameterista po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| formation of the last of the l |
| feether special                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Education to the second |
| de de la constante de la const |
| Prince consequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 5-2
Trace Organic Species
Destruction Efficiency Results
Waste Management - Bradley Landfill
Flare #3
April 21, 2005

| Inlet                 |   |                      |    | Outlet                      |                     |      |                             |                   |                                  |       |
|-----------------------|---|----------------------|----|-----------------------------|---------------------|------|-----------------------------|-------------------|----------------------------------|-------|
| Species               | ( | Concentrati<br>(ppb) | on | Emission<br>Rate<br>(lb/hr) | Concentration (ppb) |      | Emission<br>Rate<br>(lb/hr) |                   | Destruction<br>Efficiency<br>(%) |       |
| Hydrogen Sulfide      |   | 23300                |    | 1.96E-01                    | <                   | 500  | <                           | 3.21E-02          | >                                | 83.63 |
| Benzene               |   | 7240                 |    | 1.40E-01                    | <                   | 2.3  | <                           | 3.32E-04          | >                                | 99.76 |
| Benzychloride         | < | 40                   | <  | 1.26E-03                    | <                   | 0.8  | <                           | 1.92E-04          |                                  | NA    |
| Chlorobenzene         |   | 321                  |    | 8.96E-03                    | <                   | 0.3  | <                           | 6.39E-05          | >                                | 99.29 |
| Dichlorobenzenes      |   | 1380                 |    | 5.01E-02                    | <                   | 1.1  | <                           | 3.05E-04          | >                                | 99.39 |
| 1,1-dichloroethane    |   | 140                  |    | 3.43E-03                    | <                   | 0.3  | <                           | 5.60E-05          | >                                | 98.37 |
| 1,2-dichloroethane    |   | 50.4                 |    | 1.23E-03                    | <                   | 0.3  | <                           | 5.60E-05          | >                                | 95.46 |
| 1,1-dichloroethylene  |   | 44.6                 |    | 1.07E-03                    | <                   | 0.3  | <                           | 5.49E-05          | >                                | 94.87 |
| Dichloromethane       |   | 250                  |    | 5.25E-03                    |                     | 1.28 |                             | 2.05E-04          |                                  | 96.09 |
| 1,2-dibromoethane     | < | 30                   | <  | 1.39E-03                    | <                   | 0.3  | <                           | 1.06 <b>E-</b> 04 |                                  | NA    |
| Perchloroethene       |   | 1120                 |    | 6.56E-02                    | <                   | 0.2  | <                           | 8.94E-05          | >                                | 99.86 |
| Carbon tetrachloride  | < | 30                   | <  | 1.14E-03                    | <                   | 0.2  | <                           | 5.81E-05          |                                  | NA    |
| Toluene               |   | 22000                |    | 5.00E-01                    |                     | 0.37 |                             | 6.42E-05          |                                  | 99.99 |
| 1,1,1-trichloroethane | < | 30                   | <  | 9.86E-04                    | <                   | 0.2  | <                           | 5.02E-05          |                                  | NA    |
| Trichloroethene       |   | 418                  |    | 1.35E-02                    | <                   | 0.2  | <                           | 4.94E-05          | >                                | 99.63 |
| Chloroform            | < | 30                   | <  | 8.82E-04                    | <                   | 0.2  | <                           | 4.49E-05          |                                  | NA    |
| Vinyl Chloride        |   | 392                  |    | 5.90E-03                    | <                   | 0.3  | <                           | 3.54E-05          | >                                | 99.40 |
| m xylenes             |   | 12400                |    | 3.25E-01                    |                     | 0.36 |                             | 7.19E-05          |                                  | 99.98 |
| o+p xylene            |   | 4500                 |    | 1.18E-01                    | <                   | 0.3  | <                           | 6.00E-05          | >                                | 99.95 |
| TNMHC                 |   | 2057907              |    | 8.14E+00                    |                     | 2626 |                             | 7.33E-02          |                                  | 99.10 |

Note: All values preceded by "<" are below the detection limit - reported values are detection limit values. NA--Not applicable: Destruction efficiency cannot be calculated since both inlet and outlet values are below the detection limit.

| Para San San San San San San San San San Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Service Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Programment of the state of the |
| potentomista)<br>bompomistataj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Personal Per |
| Removements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| pate of contrast depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Edvorenment de la constant de la con |
| Hermony constitution of the second se |
| Environment and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

APPENDIX A - Sampling and Analytical Methods

Method:

Stack Gas Velocity and Volumetric Flow Rate From Small Stacks or Ducts

Applicable for Methods:

SCAQMD Method 2.3

Principle:

The average gas velocity in a stack gas is determined from the gas density and from measurement of the average velocity head with a standard pitot tube.

Sampling Procedure:

The velocity head and temperature is measured at the traverse points specified by SCAQMD Method 1.2. The static pressure in the stack and the atmospheric pressure is determined. The stack gas molecular weight is determined from independent measurements of  $O_2$ ,  $CO_2$  and  $H_2O$  concentrations.

Sample Recovery: and Analyses:

The stack gas velocity is determined from the measured average velocity head, the measured dry concentrations of O<sub>2</sub> and CO<sub>2</sub> and the measured concentration of H<sub>2</sub>O. The velocity is determined from the following set of equations:

Where,

 $\Delta P$  = velocity head, inches in H<sub>2</sub>O Ts = gas/temperature, degrees R

Ps = absolute static pressure

Mwd = dry molecular weight Mw = molecular weight Cp = pitot flow coefficient

Dry molecular weight of stack gas

$$Mwd = 0.44 \ (\%CO_2) + 0.32 \ (\%O_2) + 0.28 \ (\%N_2 + \%CO)$$

Molecular weight of stack gas, wet basis

$$M_w = (M_{wd} \times M_d) + 18 (1 - M_d)$$

Where, 
$$M_d = \frac{100 - Bws}{100}$$

Stack gas velocity

$$(V_s)$$
 avg. =(5130)  $C_p \times \sqrt{\Delta}P$  avg.  $\times \sqrt{T_s} \times (\frac{1}{P_s \times M_w})^{1/2}$ 

Page 1

**Determination of Moisture in Stack Gases** 

Applicable for Methods:

EPA Method 4, ARB 1-4, SCAQMD Method 4.1

Principle:

A gas sample is extracted at a constant rate from the source; moisture is removed from the stream and determined either volumetrically or gravimetrically.

Sampling Procedure:

Set up train as shown in the following figure. Sample is drawn at a constant rate through a sufficiently heated probe. The probe is connected to the impinger train by Teflon or glass tubing. The train consists of two greenburg smith impinger (SCAQMD 4.1) or one modified and 1 greenburg smith impinger (CARB & EPA) each containing 100 ml of water, an empty impinger as a knock-out and an impinger containing silica gel to protect the pump from moisture.



Sample Recovery: and Analyses:

Following testing, moisture content is determined gravimetrically or volumetrically from initial and final impinger contents weights or volume.

Determination of Particulate Matter Emissions From Stationary Sources Using a Wet Impingement Train

Reference:

SCAQMD Method 5.1

Principle:

Stack gas is withdrawn isokinetically from the source through a sample train. Particulate matter is collected in impingers containing deionized water and on a back-up filter. The impingers are contained in an ice bath to maintain a sampled gas temperature of approximately 15° C (60° F). The filter is not heated.

Sampling Procedure:

The sampling train is shown in the figure below. The sample is drawn isokinetically through a glass or quartz probe (hi-temp). The probe is connected to an impinger train by Teflon tubing. The train consists of two Greenburg-Smith impingers which contain 100 ml of DI water; an empty impinger as a knock-out; and an impinger containing silica gel to protect the pump from moisture. Sample is withdrawn isokinetically from each predetermined sample point (determined using SCAQMD Method 1.1) through the sample train, which is followed by a vacuum line, a pump, a dry gas meter and a calibrated orifice.



- Temperature Sensor
- Nozzle Glass Lined Stainless Steel Probe
- S-type Pitot Tube
- Stack Wall
- Temperature Sensor Meter
- Pirot Tube Inclined Manometer Impinger with 100 ml H20
- Empty Bubbler
- Bubbler with Silica Gel
- Ice Bath
  - Filter
- Sealed Pump (Leak Free) Filter for Pump
- Merering Valve 15.
- Vacuum Gauge 16.
- By-pass Valve 17.
- Temperature Compensated 18.
  - Dry Gas Meter
- 19.

Sample Recovery:

The moisture content is determined either gravimetrically or volumetrically from initial and final impinger weights or volume. Then the filter, probe/impinger rinse (including nozzle rinse, liner rinse, impinger contents and rinses) and silica gel are recovered into Containers #1, #2 and #3, respectively.

Analytical Procedure:

The aqueous sample is filtered through a tared fiberglass filter. An organic extraction is performed on the resulting solution using methylene chloride. Both the extraction filter and sample train filter are desiccated then measured gravimetrically. The organic extract and aqueous catch are evaporated, desiccated and measured gravimetrically.

If significant levels of sulfur compounds are present in the stack, each sample fraction is analyzed by acid-base titration for acid sulfate content and by bariumthorin titration for sulfate content.

Carbon Monoxide by SCAQMD Micro Total Carbon Analyses

Reference:

SCAQMD Method 10.1 (Tedlar Bag)

Principle:

A Tedlar bag is filled with flue gas at a constant rate. The bag contents are analyzed by total combustion analyses/flame ionization detection for carbon monoxide.

Sampling Procedure:

A gas sample is collected by evacuating the canister, see figure, at a constant rate over each test run using a rotameter/needle valve and a diaphragm pump. This causes the Tedlar bag to fill with stack gas at a constant rate while maintaining sample integrity.

Prior to each sampling run, the evacuated canister (containing the Tedlar bag) is leak checked at 2" Hg vacuum. The sample train upstream of the Tedlar bag is then purged with stack gas. At the conclusion of each test run, each Tedlar bag sample is sealed and stored in an opaque container pending analysis.

Analytical Procedure:

Carbon monoxide concentration from the sample is determined using the SCAQMD Total Combustion Analysis (TCA) procedure.



Determination of Total Gaseous Non-Methane Organic Emissions as Carbon

Reference:

SCAOMD Method 25.1

Principle:

A sample of flue gas is drawn through a condensate trap and into an evacuated 12 liter tank. Volatile organic compounds (VOC), as total gaseous non-methane organics (TGNMO), are determined by combining results from independent analysis of condensate in the traps and gases in the tanks.

Sampling Procedure:

Duplicate gas samples are withdrawn from a source at a constant rate through condensate traps immersed in dry ice followed by evacuated 12 liter (nominal) tanks. Heavy organic components condense as liquids and solids in the condensate traps. Lighter components pass as gases through the traps into the tanks. The combined results from tanks and trap analyses are used to determine a qualitative and quantitative expression of the effluent gas stream. Duplicate sampling is designed into the system to demonstrate precision.

The sampling apparatus is checked for leaks prior to the sampling program by attaching the probe end to an absolute pressure gauge and vacuum pump in series. The sample lines were evacuated to less than 10 mm Hg and the gauge shutoff valve is then closed. The sample lines are deemed to be leak-free if no loss of vacuum occurs as indicated by the vacuum gauge. During sampling the tank pressures are monitored with a 0-30 inch vacuum gauge to ensure integrated sampling.

The final vacuum of each sample is measured using a slack tube manometer. The sample is then pressurized to 800 mm Hg absolute with ultrapure nitrogen. Each sample is then analyzed using the SCAQMD TCA procedure for total non methane hydrocarbons.

Analytical Procedure:

Condensate traps are analyzed by first stripping carbon dioxide  $(CO_2)$  from the trap. The organic contents are then removed and oxidized to  $CO_2$ . This  $CO_2$  is quantitatively collected in an evacuated vessel and measured by injection into a flame ionization detection/total combustion analysis (FID/TCA) system.

The organic content of the sample fraction collected in each tank is measured by injecting a portion into the FID/TCA analysis system which uses a two phase gas chromatography (GC) column to separate carbon monoxide (CO), methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) from each other and from the total gaseous non-methane organics (TGNMO) which are eluted as backflush. All eluted components are first oxidized to CO<sub>2</sub> by a hopcalite catalyst and then reduced to methane by a nickel catalyst. The resulting methane is detected using the flame ionization detector. A gas standard containing CO, CH<sub>4</sub>, CO<sub>2</sub> and propane, traceable to NBS, is used to calibrated the FID/TCA analysis system.

Determination of Total Gaseous Non-Methane Organic Emissions as Carbon

Reference:

SCAQMD Method 25.3

Principle:

A sample of flue gas is drawn through a condensate trap (mini-impinger) and into an evacuated six liter SUMMA canister. Volatile organic compounds (VOC), as total gaseous non-methane organics (TGNMO), are determined by combining results from independent analysis of condensate in the traps and gases in the SUMMA canisters.

Sampling Procedure:

Duplicate gas samples are withdrawn from a source at a constant rate through condensate traps immersed in an ice bath followed by evacuated six liter (nominal) SUMMA canisters. Heavy organic components condense as liquids and solids in the condensate traps. Lighter components pass as gases through the traps into the canisters. The combined results from canisters and mini-impinger analyses are used to determine a qualitative and quantitative expression of the effluent gas stream. Duplicate sampling is designed into the system to demonstrate precision.

The sampling apparatus is checked for leaks prior to the sampling program by capping the end of the sample probe. The sample flow valve is then opened and then closed to introduce vacuum to the system. The vacuum drop should then cease numerically above 10 in. Hg. A cease in movement of the vacuum gauge for a period of ten minutes indicates an acceptable leak check. When sampling is initiated, the vacuum gauge must indicate a canister vacuum of greater than 28 in. Hg. Immediately after sampling a post-test leak check is performed, followed by a rinse of the PFA line into the condensate trap with 0.5 to 1.0 ml of hydrocarbon free water.

The Problem of Problem

Analytical Procedure:

Condensate traps are analyzed for total organic carbon by liquid injection into an infrared total organic carbon analyzer.

The organic content of the sample fraction collected in each canister is measured by injecting a portion into the FID/TCA analysis system which uses a two phase gas chromatography (GC) column to separate carbon monoxide (CO), methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) from each other and from the total gaseous non-methane organics (TGNMO) which are eluted as backflush. All eluted components are first oxidized to  $CO_2$  by a hopcalite catalyst and then reduced to methane by a nickel catalyst. The resulting methane is detected using the flame ionization detector. A gas standard containing CO,  $CH_4$ ,  $CO_2$  and propane, traceable to NBS, is used to calibrated the FID/TCA analysis system.

# **CONTINUOUS EMISSIONS MONITORING SYSTEM - TRUCK**

SCAQMD Method 100.1

The continuous emissions monitoring system consists of a Thermo Electron Model 10AR chemiluminescence NO/NO  $_{\rm X}$  analyzer, a Teledyne electro chemical O $_{\rm 2}$  analyzer, a Thermo Electron Model 48H CO gas filter correlation analyzer and a Horiba PIR 2000 non dispersive infrared CO $_{\rm 2}$  analyzer. All analyzer specifications are provided in Table 1. All concentrations are determined on a dry basis. Concentrations of NO $_{\rm X}$ , CO, O $_{\rm 2}$  and CO $_{\rm 2}$  are continuously recorded on a Linseis 10-inch strip chart recorder and a Strawberry Tree Data Acquisition System (DAS). The extractive monitoring system conforms with the requirements of SCAQMD Method 100.1.

The sampling probe (heated to 250°F), constructed of 1/2 inch-diameter 316 stainless steel, is connected to a condenser with a six foot length of 3/8 inch Teflon line (heated to 250°F). A Nupro stainless steel filter (10 micron) is connected at the tip of the probe and maintained at stack temperature.

The condenser consists of a series of two stainless steel moisture knock-out bottles immersed in an ice water bath. The system is designed to minimize contact between the sample and the condensate. Condensate is continuously removed from the knock-out bottles via a peristaltic pump. The condenser outlet temperature is monitored either manually at 10-minute intervals or on a strip chart recorder/DAS system. The sample exiting the condenser is then transported through a filter, housed in a stainless steel holder, followed by 3/8 inch O.D. Teflon tubing and a Teflon coated (or stainless steel/viton) diaphragm pump to the sample manifold. The sample manifold is constructed of stainless steel tubing and directs the sample through each of five rotameters to the NO<sub>X</sub> monitor, O<sub>2</sub> monitor, CO monitor, CO 2 monitor and excess sample exhaust line, respectively. Sample flow through each channel is controlled by a back pressure regulator and by stainless steel needle valves on each rotameter. All components of the sampling system that contact the sample are composed of stainless steel, Teflon or glass.

The calibration system is comprised of two parts: the analyzer calibration and the system bias check. The calibration gases are, at a minimum, certified to  $\pm 1\%$  by the manufacturer. Where necessary to comply with the reference method requirements, EPA Protocol 1 gases are used. The cylinders are equipped with pressure regulators which supply the calibration gas to the analyzers at the same pressure and flow rate as the sample. The selection of zero, span or sample gas directed to each analyzer is accomplished by operation of the zero, calibration or sample selector knobs located on the main flow control panel.

For SCAQMD Method 100.1 testing, the following procedures are conducted before and after each series of test runs:

### Leak Check:

The leak check is performed by plugging the end of the sampling probe, evacuating the system to at least 20 inches of Hg. The leak check is deemed satisfactory if the system holds 20 inches of Hg vacuum for five minutes with less than one inch Hg loss.

#### Linearity Check:

The  $NO_X$ , CO,  $CO_2$  and  $O_2$  analyzers linearity check is performed by introducing, at a minimum, zero gas, mid range calibration gas (40-60% scale) and high range calibration gas (80-100% scale). Instrument span value is set on each instrument with the mid range gas. The high range calibration gas (80-100% scale) is then introduced into each instrument without any calibration adjustments. Linearity is confirmed, if all values agree with the calibration gas value to within 2% of the range.

### Stratification Check:

A stack stratification check is performed (pre-test only) by traversing the stack with the appropriate number of traverse alternately with the reference point (center). If the gas composition is homogenous, <10% variation between any traverse points in the gas stream and the normalized average point, single point gas sampling is performed at the reference point. If stratification exceeds the 10% criteria, then the stack cross section is traversed during sampling.

Horizon Air Measurement Services, Inc.
Continuous Emissions Monitoring
December 5, 2003 - Revision #5 (WPDOCS\METHODS\SC1001TRK.WPD)

Page 1

### System Bias Check:

The system bias check is accomplished by transporting the same gases used to zero and span the analyzers to the sample system as close as practical to the probe inlet. This is accomplished by opening a valve located on the probe, allowing the gas to flow to the probe and back through the moisture knockout and sample line to the analyzers. During this check the system is operated at the normal sampling rate with no adjustments. The system bias check is considered valid if the difference between the gas concentration exhibited by the measurement system which a known concentration gas is introduced at the sampling probe tip and when the sample gas is introduced directly to the analyzer, does not exceed  $\pm$  5% of the analyzer range.

### Response Time:

Response time (upscale and downscale) for each analyzer is recorded during the system bias check. Upscale response time is defined as the time it takes the subject analyzer gas to reach 95% of the calibration gas value after introducing the upscale gas to the sample bias calibration system. Downscale response time is defined as the time it takes the subject analyzer to return to zero after the zero gas is introduced into the sample system bias calibration system.

### NO, Conversion Efficiency

The  $NO_x$  analyzer  $NO_2$  conversion efficiency is determined by injecting a  $NO_2$  gas standard directly into the  $NO_x$  analyzer (after initial calibration). The analyzer response must be a least 90% of the  $NO_2$  standard gas value.

### NO, Converter Efficiency (alternate method)

The mid level NO gas standard is directly injected into a clean leak-free Tedlar bag. The bag is then diluted 1:1 with air (20.9 % O<sub>2</sub>). The bag is immediately attached to the NQ sample line. The initial NQ concentration is recorded on the strip chart. After at least 30 minutes the Tedlar bag is reattached to the NO<sub>x</sub> sample line. Analyzer response must be at 98% of the initial Tedlar bag NO<sub>x</sub> value to be acceptable.

In between each sampling run the following procedures are conducted:

### Zero and Calibration Drift Check:

Upon the completion of each test run, the zero and calibration drift check is performed by introducing zero and mid range calibration gases to the instruments, with no adjustments (with the exception of flow to instruments) after each test run. The analyzer response must be within  $\pm 3\%$  of the actual calibration gas value.

#### Analyzer Calibration:

Upon completion of the drift test, the analyzer calibration is performed by introducing the zero and mid range gases to each analyzer prior to the upcoming test run and adjusting the instrument calibration as necessary.

#### System Bias Check

(same as above)

A schematic of the sample system and specific information of the analytical equipment is provided in the following pages.

### TABLE 1

## CONTINUOUS EMISSIONS MONITORING LABORATORY - TRUCK

# $\mathbf{NO_{x}}$ CHEMILUMINESCENT ANALYZER -- THERMO ELECTRON MODEL 10 A

Response Time (0-90%)

1.5 sec -- NO mode/1.7 sec -- NO<sub>x</sub> mode

Zero Drift

Negligible after 1/2 hour warmup

Linearity

+ 1% of full scale

Accuracy

Derived from the NO or NO,

calibration gas, + 1% of full scale

Operating Ranges (ppm)

2.5, 10, 25, 100, 250, 1000, 2500, 10000

Output

0-1 volt

# O<sub>2</sub> ANALYZER, FUEL TYPE -- TELEDYNE MODEL 326RA

Response Time (0-90%)

60 seconds

Accuracy

± 1% of scale at constant temperature + 1% of scale of + 5% of reading, whichever is greater, over the operation

temperature range.

Operating Ranges (%)

0-5, 0-25

Output

0-1 volt

# O2 ANALYZER, PARAMAGNETIC -- SERVOMEX MODEL 1400B

Response Time (0-90%)

15 seconds

Accuracy

0.1% oxygen

Linearity

± 1% scale

Operating Ranges (%)

0-25, 0-100

Output

0-1 volt

## CO GAS FILTER CORRELATION -- THERMO ELECTRON MODEL 48H

Response Time (0-95%)

1 minute

Zero Drift

+ 0.2 ppm CO

Span Drift

Less than 1% full scale in 24 hours

Linearity

± 1% full scale, all ranges

Accuracy

+ 0.1 ppm CO

Operating Ranges (ppm)

50, 100, 250, 500, 1000, 2500, 5000,

10,000, 25,000, 50,000

Output

0-1 volt

Horizon Air Measurement Services, Inc. Continuous Emissions Monitoring December 5, 2003 - Revision #5 (WPDOCS\METHODS\SC1001TRK.WPD)

Page 3

### TABLE 1 (Cont.)

# CO<sub>2</sub> INFRARED GAS ANALYZER -- HORIBA - MODEL PIR 2000

5 seconds Response Time (0-90%)

+ 1% of full scale in 24 hours Zero Drift  $\pm$  1% of full scale in 24 hours Span Drift

+ 2% of full scale Linearity

Less than 1% of full scale Resolution

0-5, 0-15, 0-25 Operating Ranges (%)

0-1 volt Output

# SO<sub>2</sub> PULSED FLOURESCENT - TECO - MODEL 43C-HL

80 seconds Response Time +1%Zero Drift **+** 1% Span Drift ±1% Linearity + 1% Resolution

5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 Operating Ranges

0-10 volt Output

# RATFISCH FID TOTAL HYDROCARBON ANALYZER -- MODEL 55CA

5 seconds Response Time (0-90%) ± 1% full scale in 24 hours Zero Drift + 1% full scale in 24 hours Span Drift ± 1% full scale - constant Linearity

 $\pm$  1% full scale at constant temp. Accuracy

10, 100, 1000, 10,000 Operating Ranges (ppm)

0 - 10 volts Output

# LINSEIS MODEL L2045 FOUR PEN STRIP CHART RECORDER

up to 120 cm/min Pen Speed

0-20 volts Measuring Response 0.25% Linearity Error 0.3%

Accuracy

Manual (from 1 to 10X full scale) Zero Suppression

# LINEAR 3 PEN CONTINUOUS -- MODEL 595 STRIP CHART

20 inches/second Pen Response 1 Mv through 5V Measuring Response

Electronically adjustable full scale with 1 full Zero Set

scale of zero suppression

Total limit of error  $\pm 0.5\%$ Accuracy



NO/NO<sub>x</sub> by Continuous Analyzer

Applicable Reference

Methods:

EPA 7E, EPA 20; CARB 100, BAAQMD ST-13A, SCAQMD 100.1

Principle:

A sample is continuously withdrawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of NO or NO<sub>x</sub>.

Analyzer:

TECO Model 10AR

Measurement Principle:

Chemiluminescence

Accuracy:

1% of full scale

Ranges:

0-2.5, 0-10, 0-25, 0-100, 0-250, 0-1000, 0-2500, 0-10,000 ppm

Output:

0-10 V

Inferences:

Compounds containing nitrogen (other than ammonia) may cause interference.

Response Time:

90%, 1.5 seconds (NO mode) and 1.7 seconds (NO $_{\rm X}$  mode)

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously. If EPA Method 20 is used, that method's specific procedures for selecting sample points are used.

Analytical Procedure:

The oxides of nitrogen monitoring instrument is a chemiluminescent nitric oxide analyzer. the operational basis of the instrument is the chemiluminescent reaction of NO and ozone (O<sub>3</sub>) to form NO<sub>2</sub> in an excited state. Light emission results chemiluminescence is monitored through an optical filter by a high sensitivity photomultiplier tube, the output of which is electronically processed so it is linearly proportional to the NO concentration. The output of the instrument is in ppmV.

When NO<sub>2</sub> is expected to be present in the flue gas, a supercooled water dropout flask will be placed in the sample line to avoid loss of NO<sub>2</sub>. Since NO<sub>2</sub> is highly soluble in water, "freezing out" the water will allow the NO<sub>2</sub> to reach the analyzers for analysis. The analyzer measures NO only. In the NO<sub>x</sub> mode, the gas is passed through a moly converter which converts NO<sub>2</sub> to NO and a total NO<sub>x</sub> measurement is obtained. NO<sub>2</sub> is determined as the difference between NO and NO<sub>x</sub>. Use of a moly converter instead of a stainless steel converter eliminates NH<sub>3</sub> interference; NH<sub>3</sub> is converted to NO with a stainless converter, but not with a moly converter.

Oxygen (O2) by Continuous Analyzer

Applicable Reference

Methods:

EPA 3A, EPA 20, CARB 100, BAAQMD ST-14, SCAQMD 100.1

Principle:

A sample is continuously withdrawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of  $O_2$  concentration.

Analyzer:

Teledyne Model 326R

Measurement Principle:

Electrochemical cell

Ranges:

0-5, 0-25% 0-100%

Accuracy:

1% of full scale

Output:

0-1 V

Interferences:

Halogens and halogenated compounds will cause a positive interference. Acid gases will consume the fuel cell and cause a slow calibration drift.

Response Time:

90% < 60 seconds

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously. If Method 20 is used, that method's specific procedures for selecting sample points are used. Otherwise, stratification checks are performed at the start of a test program to select single or multiple-point sample locations.

Analytical Procedure:

An electrochemical cell is used to measure  $O_2$  concentration. Oxygen in the flue gas diffuses through a Teflon membrane and is reduced on the surface of the cathode. A corresponding oxidation occurs at the anode internally and an electric current is produced that is proportional to the concentration of oxygen. This current is measured and conditioned by the instrument's electronic circuitry to give an output in percent  $O_2$  by volume.

Carbon Dioxide (CO2) by Continuous Analyzer

Applicable Reference

EPA 3A, CARB 100, BAAQMD ST-5, SCAQMD 100.1

Principle:

A sample is continuously drawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of CO<sub>2</sub> concentration.

Analyzer:

PIR 2000

Measurement Principle:

Non-dispersive infrared (NDIR)

Accuracy:

1% of full scale

Ranges:

0-5, 0-15%

Output:

0-1 V

Interferences:

A possible interference includes water. Since the instrument receives dried sample gas, this interference is not significant.

Response Time:

5 seconds

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously.

Analytical Procedure:

Carbon dioxide concentrations are measured by short path length non-dispersive infrared analyzers. These instruments measure the differential in infrared energy absorbed from energy beams passed through a reference cell (containing a gas selected to have minimal absorption of infrared energy in the wavelength absorbed by the gas component of interest) and a sample cell through which the sample gas flows continuously. The differential absorption appears as a reading on a scale of 0-100%.

Carbon Monoxide (CO) by NDIR/Gas Filter Correlation

Applicable Reference

EPA 6C; CARB 1-100; BAAQMD ST-6, SCAQMD 100.1

Methods:

Principle: A sample is continuously drawn from the flue gas stream, conditioned and

conveyed to the instrument for direct readout of CO concentration.

Analyzer:

TECO, Model 48H

Measurement Principle:

NDIR/Gas Filter Correlation

Precision:

0.1% ppm

Ranges:

 $0-50,\ 0-100,\ 0-250,\ 0-500,\ 0-1000,\ 0-2500,\ 0-5000,\ 0-10000,\ 0-2500,\ 0-3,000$ 

ppm

Output:

0-1 V

Interferences:

Negligible interference from water and CO<sub>2</sub>

Rise/Fall times (0-95%)

1 minute @ 1 lpm flow, 30 second integration time

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously. Sample point selection has been described

previously.

Analytical Procedure:

Radiation from an infrared source is chopped and then passed through a gas filter which alternates between CO and N <sub>2</sub> due to rotation of a filter wheel. The radiation then passes through a narrow band-pass filter and a multiple optical pass sample cell where absorption by the sample gas occurs. The IR radiation exits the sample cell and falls on a solid state IR detector.

Sulfur Dioxide (SO2) by Pulsed Flourescent

Applicable Reference

EPA 10; CARB 1-100; BAAQMD ST-6, SCAQMD 100.1

Methods:

Principle:

A sample is continuously drawn from the flue gas stream, conditioned and

conveyed to the instrument for direct readout of SO<sub>2</sub> concentration.

Analyzer:

TECO, Model 43C-HL

Measurement Principle:

Pulsed flourescense SO<sub>2</sub> analyzer

Precision:

0.1% ppm

Ranges:

5, 10, 20, 50, 100, 200 ppm

Output:

0-10 V

Interferences:

Less than lower detectable limit except for the following: NO <3 ppb, m-xylene

<2 ppm, H<sub>2</sub>O <2% of reading.

Response Time:

80 seconds

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM

system described previously. Sample point selection has been described

previously.

Analytical Procedure:

The sample flows into the flourescent chamber, where pulsating UV light excites the  $SO_2$  molecules. The condensing lens focuses the pulsating UV light into the mirror assembly. The mirror assembly contains four selecting mirrors that reflect only the wavelengths which excite  $SO_2$  molecules. As excited  $SO_2$  molecules decay to lower energy states they emit UV light that is proportional to the  $SO_2$  concentration. The PMT (photomultiplier tube) detects UV light

emission from decaying SO<sub>2</sub> molecules. The PMT continuously monitors pulsating UV light source and is connected to a circuit that compensates for

fluctuating in the light.



Atm AA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

Tandem Gas Chromatographic/Mass Spectroscopic-Electrolytic Conductivity Detector (GC/MS-ELCD) Method for Determination of Total Sulfur in Gas Samples

AtmAA, Inc. 03-060

3/30/93

This method measures selected reduced sulfur species, including but not limited to hydrogen sulfide, carbonyl sulfide, methyl mercaptan, ethyl mercaptan, dimethyl sulfide, carbon disulfide, isopropyl mercaptan, n-propyl mercaptan, and dimethyl disulfide in gaseous sample matrices using gas chromatographic separation and a mass spectrometric and electrolytic conductivity detector (ELCD), where the ELCD measures hydrogen sulfide only. A non-polar methyl silicon capillary gas chromatographic column is used for component separation and selected ion monitoring is used for component Component quantification is obtained using a quantification. multi-component external standard prepared by Scott Specialty The lower detection limit varies by component but is at least 0.1 ppmv ethyl mercaptan (component of lowest sensitivity) for a 0.31 ml sample volume injection. The upper quantitation limit has not been determined but is at least beyond 80 ppmv dimethyl disulfide, for which response remained linear from 0.1 ppmv to 80 ppmv.

Hydrogen sulfide is measured using an electrolytic conductivity detector operated in the oxidative sulfur mode. A Chromosil 310 column, operated isothermally at 45°C. is used to separate  $\rm H_2S$  from other sulfur components. A fixed volume loop injection is used in the analysis for  $\rm H_2S$ .

Lower Detection Limits (LDL's):

Using a 1 ml injection volume for H<sub>2</sub>S by electrolytic conductivity detector and 0.40 ml injection volume for GC/MS measured sulfur compounds, the following LDL's are obtained:

|                    | (ppmv) |
|--------------------|--------|
| Hydrogen sulfide   | 0.5    |
| Carbonyl sulfide   | 0.03   |
| Methyl mercaptan   | 0.03   |
| Ethyl mercaptan    | 0.04   |
| Dimethyl sulfide   | 0.02   |
| Carbon disulfide   | 0.02   |
| i-propyl mercaptan | 0.03   |
| n-propyl mercaptan | 0.03   |
| Dimethyl disulfide | 0.02   |
|                    |        |

## Equipment:

A Hewlett-Packard 5890 series II gas chromatograph (GC), Hewlett-Packard 5971A Mass Selective Detector, 486 MS/DOS computer and HP operating software are used for all sulfur species except H<sub>2</sub>S. The GC is fitted with a heated 6-port Valco 1/16" line, sample injection valve. All gas transfer lines to the sample loop are fused silica lined Restek tubing. The fixed volume (0.40 ml) sample loop is Teflon. The transfer line from the valve to the GC column is cleaned and treated blank 0.53 mm OD fused silica line with polyimide coating.

 $\rm H_2S$  is measured using a Varian 1400 GC with the Hall oxidative quartz tube furnace and electrolytic cell attached. Nitrogen is used as carrier and oxygen is used as the combustion gas.

Multi-component gaseous standards are prepared by Scott Specialty Gas and are contained in two separate aluminum cylinders and a Scotty IV canister as follows:

| Cylinder A (CAL  | 12250)                 | cylinder B (CAL3563) |                                     |  |  |
|------------------|------------------------|----------------------|-------------------------------------|--|--|
| Carbonyl sulfide | 15.2 ppmv<br>13.4 ppmv |                      | 12.3 ppmv<br>22.6 ppmv<br>20.3 ppmv |  |  |

Scotty IV (mix 252)

Hydrogen Sulfide 93.8 ppmv

Gas tight clean glass volumetric syringes of 10, 20, & 50 ml capacity, with smooth glass barrel (not sintered glass) are used to make volumetric dilutions of sample or standard.

# GC/MS SIM parameters:

| Dwell per ion                                                           | start time                                      | Ions                                                             |
|-------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|
| Group 1: 75 msec. Group 2: 75 msec. Group 3: 75 msec. Group 4: 75 msec. | 8.0 min.<br>10.0 min.<br>14.5 min.<br>19.5 min. | 60<br>47,48,64<br>47,62,76,78,43,61<br>79,94,122,142,156,<br>128 |

# Components monitored:

Group 1: carbonyl sulfide Group 2: methyl mercaptan

Group 2: methyl mercaptan
Group 3: ethyl mercaptan, dimethyl disulfide, carbon
ethyl mercaptan, n-propyl mer

disulfide, isopropyl mercaptan, n-propyl mercaptan

Group 4: dimethyl sulfide

019

| Component           | Quantitation ion |   | Confirmation | ion |
|---------------------|------------------|---|--------------|-----|
| carbonyl sulfide    | 60               |   | none         |     |
| methyl mercaptan    | 47               |   | 48           |     |
| ethyl mercaptan     | 62               |   | 47           |     |
| dimethyl sulfide    | 62               |   | 47           |     |
| carbon disulfide    | 76               |   | 78           |     |
| iso-propyl mercapta | n 76             |   | 43,47,61     |     |
| n-propyl mercaptan  | 76               | • | 43,47,61     |     |
| dimethyl disulfide  | 94               | • | 79           |     |

Sulfur dioxide is analyzed by monitoring mass 64 which is included in Group 2 ions.

#### Calibration:

Gaseous standards can be analyzed prior to or after a set of samples. Response factors are determined from a single point standard calibration. Multi-point calibrations are performed to verify linearity. Consistency of standard response with continuing calibrations is observed to indicate performance of multi-point calibration.

Samples containing components at less than the stated LDL can be analyzed by cryogenically focusing a measured volume of gaseous sample onto a glass bead filled Teflon loop immersed in liquid argon. The sample is thermally transferred upon injection by immersing the sample loop in near boiling temperature water. The LDL obtained by this technique is calculated as:

$$LDL_{crvo} = (cryo volume/0.40)*LDL_{o.40}$$

Acceptable volumes for cryogenic concentration range from 3 to 100 ml. and are determined based on amounts of other components in the sample such as water, carbon dioxide or hydrocarbons.

#### Procedure:

A volumetric sample of landfill or source collected gas is transferred from a Tedlar bag to the 6-port valve injection line using a glass syringe of approximately 10 ml. A Teflon loop of 0.40 ml volume is used to inject the sample. When sample concentrations exceed that of the standard, appropriate volumetric sample dilutions are made using the glass syringes with dry nitrogen diluent. Immediately after sample injection, the GC/MS is started. Standards are analyzed in the same manner as samples. Appropriate component peaks are monitored and integrated after sample analysis data set has been obtained.

Hydrogen sulfide is measured using the electrolytic conductivity detector by a separate direct fixed loop valve injection using heated Teflon loop, transfer lines, and Teflon Chromosil 310 GC column.



A response factor for a standard component is calculated as:

rf = std. amt. / std. area

Sample concentration is calculated using the response factor:

conc. = rf x sample area

At least 10% of samples in a sample set, or minimum of one sample per set are analyzed twice to determine precision. A separate report showing repeat analyses results is included with an analytical report of sulfur component concentrations per each sample set. Repeat analyses must agree within +/- 10% except for component concentrations less than 1 ppmv. A nitrogen blank is analyzed between standards and samples to verify that there is no analyzed between standards and samples to verify that there is no lived as possible, preferably same day and within four hours of

ection. Data is being gathered to determine stability of surfur compounds in Tedlar\* bag containers in an effort to extend sample holding time. Samples are usually analyzed before standards sample to prevent carry-over, since most sulfur components measured in to prevent gas samples are lower in concentration than those in the standards.

GC/MS Analysis Conditions:

GC conditions: a 30 M  $\times$  0.2 mm, 0.50 um film methyl silicon PONA column from Hewlett-Packard is temperature programmed as follows:

-65 degrees C, hold min. 15 degrees C min. to 220 degrees C, hold 5 min.

Valve oven Temp. 150 degrees C GC/MS transfer line 180 degrees C Carrier gas is helium, pressure regulated at 21 psi.

## MS Conditions:

MS calibration is performed periodically prior to performing analyses using PFTBA (perfluoro-tributylamine) as supplied by Hewlett-Packard and as controlled by HP software under the mid-range auto tine program. Solvent delay = 8 min.

Hall Detector/GC Analysis Conditions:

6' x 1/8" Teflon, Chromosil 310 analytical column 45 degrees C, isothermal Valve oven & transfer line Temp. 105 degrees C. Carrier gas is nitrogen, flow rate 18 cc/min. Oxygen oxidation gas, flow rate 18 cc/min. Quartz tube oxidation oven Temp. 650 degrees C.



**APPENDIX B - Computer Printout of Results** 

### SCAQMD Method 100.1 Emission Rates

Facility: Bradley Landfill Source: Flare #3

Source: Flare #3 Job No.: W07-042 Date: 4/21/2005

| Run Number<br>Load<br>EPA F-Factor<br>Stack Flow Rate<br>Oxygen<br>Carbon Dioxide | ******* dscf/MMBtu dscfm % %               |                                                                                                                                                              | 1<br>as Found<br>10411<br>11579<br>11.11<br>8.56 |             | 2<br>as Found<br>10411<br>12274<br>11.15<br>8.89 |
|-----------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|--------------------------------------------------|
| Oxides of Nitrogen                                                                |                                            |                                                                                                                                                              |                                                  |             |                                                  |
| Concentration Concentration @ 3 % O2 Concentration Emission Rate Emission Rate    | ppm<br>ppm<br>lb/dscf<br>lb/MMBtu<br>lb/hr |                                                                                                                                                              | 18.4<br>33.6<br>2.23E-06<br>4.95E-02<br>1.55     |             | 17.9<br>32.9<br>2.17E-06<br>4.84E-02<br>1.60     |
| Carbon Monoxide                                                                   |                                            |                                                                                                                                                              |                                                  |             |                                                  |
| Concentration Concentration @ 3 % O2 Concentration Emission Rate Emission Rate    | ppm<br>ppm<br>lb/dscf<br>lb/MMBtu<br>lb/hr | <td>20.0<br/>36.6<br/>1.48E-06<br/>3.28E-02<br/>1.025</td> <td>&lt; &lt; &lt; &lt; &lt; &lt;</td> <td>20.0<br/>36.7<br/>1.48E-06<br/>3.29E-02<br/>1.087</td> | 20.0<br>36.6<br>1.48E-06<br>3.28E-02<br>1.025    | < < < < < < | 20.0<br>36.7<br>1.48E-06<br>3.29E-02<br>1.087    |

### SCAQMD Method 5.1 Particulate Emissions

Facility: Bradley Landfill

Source: Flare #3
Job No.: W07-042
Date: 4/21/2005

| STANDARD TEMPERATURE                              | Degrees F     | 60       |          |          |           |  |  |
|---------------------------------------------------|---------------|----------|----------|----------|-----------|--|--|
| RUN NUMBER                                        | ****          | 1        | 2        | 1        | 2         |  |  |
| DATE OF RUN                                       | ****          | 04/21/05 | 04/21/05 | 04/21/05 | 04/21/05  |  |  |
| CLOCK TIME: INITIAL                               | ****          | 910      | 1112     | 910      | 1112      |  |  |
| CLOCK TIME: FINAL                                 | ****          | 1025     | 1220     | 1025     | 1220      |  |  |
| OLOGIC TIME. THULE                                |               | 1025     | 1220     | 1025     | 1220      |  |  |
| AVG. STACK TEMPERATURE                            | Degrees F     | 1646     | 1621     |          |           |  |  |
| AVG. SQUARE DELTA P                               | Inches H20    | 0.1000   | 0.1000   |          |           |  |  |
| NOZZLE DIAMETER                                   | Inches        | 1.020    | 1.020    |          |           |  |  |
| BAROMETRIC PRESSURE                               | Inches HG     | 29.07    | 29.07    |          |           |  |  |
| SAMPLING TIME                                     | Minutes       | 60       | 60       |          |           |  |  |
| SAMPLE VOLUME                                     | Cubic Feet    | 53.032   | 54.681   |          |           |  |  |
| AVG. METER TEMP.                                  | Degrees F     | 93.1     | 100.8    |          |           |  |  |
| AVG. DELTA H                                      | Inches H20    | 2.20     | 2.20     |          |           |  |  |
| DGM CALIB. FACTOR [Y]                             | *****         | 1.0015   | 1.0015   |          |           |  |  |
| WATER COLLECTED                                   | Milliliters   | 155      | 162      |          |           |  |  |
| CO 2                                              | Percent       | 8.56     | 8.89     |          |           |  |  |
| 02                                                | Percent       | 11.11    | 11.15    |          |           |  |  |
| CO                                                | Percent       |          |          |          |           |  |  |
| CH4                                               | Percent       |          |          |          |           |  |  |
| N 2                                               | Percent       | 80.33    | 79.96    |          |           |  |  |
| STACK AREA                                        | Square Inches | 7238.2   | 7238.2   |          |           |  |  |
| STATIC PRESSURE                                   | Inches WG.    | -0.005   | -0.005   |          |           |  |  |
| PITOT COEFFICIENT                                 | *****         | 0.84     | 0.84     |          |           |  |  |
| SAMPLE VOLUME DRY                                 | DSCF          | 48.79    | 49.61    |          |           |  |  |
| WATER AT STD.                                     | SCF           | 7.3      | 7.6      |          |           |  |  |
| MOISTURE                                          | Percent       | 13.0     | 13.3     |          |           |  |  |
| MOLE FRACTION DRY GAS                             | ****          | 0.87     | 0.87     |          |           |  |  |
| MOLECULAR WT.DRY                                  | lb/lb Mole    | 29.81    | 29.87    |          |           |  |  |
| EXCESS AIR                                        | Percent       | 110      | 112      |          |           |  |  |
| MOLECULAR WT. WET                                 | lb/lb Mole    | 28.27    | 28.28    |          |           |  |  |
| STACK GAS PRESSURE                                | Inches HG     | 29.07    | 29.07    |          |           |  |  |
| STACK VELOCITY                                    | AFPM          | 690      | 686      |          |           |  |  |
| VOLUMETRIC FLOWRATE, DRY STD.                     | DSCFM         | 7235     | 7249     | 11579    | * 12274 * |  |  |
| VOLUMETRIC FLOWRATE, ACTUAL                       | ACFM          | 34669    | 34462    | 1.070    | 12217     |  |  |
| ISOKINETIC RATIO                                  | Percent       | 98       | 100      |          |           |  |  |
|                                                   |               |          | .00      |          |           |  |  |
| CALCULATIONS FOR GRAIN LOADING AND EMISSION RATES |               |          |          |          |           |  |  |
| TOTAL PARTICULATE                                 | mg            | 11.2     | 28.5     | 11.2     | 28.5      |  |  |
| PARTICULATE CONCENTRATION                         | gr/dscf       | 0.0035   | 0.0088   | 0.0035   | 0.0088    |  |  |
| PARTICULATE EMISSION RATE                         | lb/hr         | 0.22     | 0.55     | 0.35     | 0.93      |  |  |
|                                                   | 100,111       | ·        | 0.00     | 0.00     | 0.30      |  |  |

<sup>\*</sup>Denotes the use of calculated flowrate based on expansion factor of LFG.

## SCAQMD Method 307.91

Facility: Bradley Landfill

Source: Flare #3 Job No.: W07-042 Date: 4/21/2005

## Sulfur Compounds

| Speciated Compound   |   | Concentration ppm, as H2S | No. of S<br>molecules<br>in Compound | Total S<br>ppm, as H2S | SO2 Conc.<br>mg/dscf | Avg. Inlet<br>Flow Rate<br>dscfm | SO2 Rate<br>lb/hr |
|----------------------|---|---------------------------|--------------------------------------|------------------------|----------------------|----------------------------------|-------------------|
| Hydrogen Sulfide     |   | 23.3                      | 1                                    | 23.30                  | 1.784                | 1563                             | 0.369             |
| Carbonyl Sulfide     |   | 0.17                      | 1                                    | 0.17                   | 0.013                | 1563                             | 0.003             |
| Methyl mercaptan     |   | 3.51                      | 1                                    | 3.51                   | 0.269                | 1563                             | 0.056             |
| Ethyl mercaptan      | < | 0.10                      | 1                                    | 0.10                   | 0.008                | 1563                             | 0.002             |
| Dimethyl sulfide     |   | 6.66                      | 1                                    | 6.66                   | 0.510                | 1563                             | 0.105             |
| Carbon disulfide     |   | 0.09                      | 2                                    | 0.18                   | 0.014                | 1563                             | 0.003             |
| Dimethyl disulfide   |   | 0.16                      | 2                                    | 0.32                   | 0.025                | 1563                             | 0.005             |
| iso-propyl mercaptan | < | 0.06                      | 1                                    | 0.06                   | 0.005                | 1563                             | 0.001             |
| n-propyl mercaptan   | < | 0.50                      | 1                                    | 0.50                   | 0.038                | 1563                             | 0.008             |
| Total                |   |                           |                                      | 34.80                  |                      |                                  | 0.551             |

## SCAQMD Methods 1-4 Flowrate Determination

Facility: Bradley Landfill

Source: Flare #3 Job No.: W07-042 Date: 4/21/2005

| Date: 4/21/2005                 |                  |        |        |         |
|---------------------------------|------------------|--------|--------|---------|
| STANDARD TEMPERATURE            | Degrees F        | 60     | 60     | 60      |
| RUN NUMBER                      | ****             | 1      | 2      | Average |
| CLOCK TIME: INITIAL             | ****             | 910    | 1112   | Average |
| CLOCK TIME: FINAL               | *****            | 1010   | 1212   |         |
|                                 |                  | 1010   | 12.12  |         |
| AVG. STACK TEMPERATURE          | Degrees F        | 118    | 129    | 124     |
| AVG. SQUARE DELTA P             | Inches H20       | 0.8367 | 0.8944 | 0.8655  |
| BAROMETRIC PRESSURE             | Inches HG        | 29.07  | 29.07  | 29.07   |
| SAMPLING TIME                   | Minutes          | 60     | 60     | 60      |
| SAMPLE VOLUME                   | Cubic Feet       | 47.079 | 45.987 | 46.533  |
| AVG. METER TEMP.                | Degrees F        | 89.9   | 93.0   | 91.5    |
| AVG. DELTA H                    | Inches H20       | 1.60   | 1.60   | 1.60    |
| DGM CALIB. FACTOR [Y]           | *****            | 1.0076 | 1,0076 | 1.0076  |
| WATER COLLECTED                 | Milliliters      | 58     | 60     | 59      |
| CO 2                            | Percent          | 28.9   | 28.9   | 28.9    |
| O 2                             | Percent          | 4.2    | 4.2    | 4.2     |
| CO                              | Percent          | 0.0    | 0.0    | 0.0     |
| CH4                             | Percent          | 34.0   | 34.0   | 34.0    |
| N 2                             | Percent          | 33.0   | 33.0   | 33.0    |
| STACK AREA                      | Square Inches    | 73.540 | 73.540 | 73.5    |
| STATIC PRESSURE                 | Inches WG        | 10.00  | 10.00  | 10.00   |
| PITOT COEFFICIENT               | ****             | 0.99   | 0.99   | 0.99    |
| SAMPLE VOLUME DRY               | DSCF             | 43.76  | 42,50  | 43.13   |
| WATER AT STD.                   | SCF              | 2.7    | 2.8    | 2.8     |
| MOISTURE                        | Percent          | 5.9    | 6.2    | 6.1     |
| MOLE FRACTION DRY GAS           | *****            | 0.94   | 0.94   | 0.94    |
| MOLECULAR WT.DRY                | lb/lb Mole       | 28.72  | 28.72  | 28.72   |
| EXCESS AIR                      | Percent          | 93     | 93     | 93      |
| MOLECULAR WT. WET               | lb/lb Mole       | 28.09  | 28.05  | 28.07   |
| STACK GAS PRESSURE              | Inches HG        | 29.81  | 29.81  | 29.81   |
| STACK VELOCITY                  | AFPM             | 3531   | 3813   | 3672    |
| VOLUMETRIC FLOWRATE, DRY STD.   | DSCFM            | 1521   | 1606   | 1563    |
| VOLUMETRIC FLOWRATE, ACTUAL     | ACFM             | 1803   | 1947   | 1875    |
| EMISSION RATES                  |                  |        |        | , , , , |
| SAMPLE A                        |                  |        |        |         |
| TNMHC Concentration, as CH4     | 12 to 120        | 0040   |        |         |
| TNMHC Concentration, as CH4     | ppm              | 2219   |        | 2219    |
| TNMHC Emission Rate, as CH4     | mg/dscf<br>lb/hr | 42.41  |        | 42.41   |
| Travallic Emission Nate, as CH4 | ID/NI            | 8.53   |        | 8.77    |
| SAMPLE B                        |                  |        |        |         |
| TNMHC Concentration, as CH4     | ppm              | 1897   |        | 1897    |
| TNMHC Concentration, as CH4     | mg/dscf          | 36.24  |        | 36.24   |
| TNMHC Emission Rate, as CH4     | lb/hr            | 7.29   |        | 7.49    |
| ·                               | <del></del>      | · ·=•  |        | 1.10    |
| AVERAGE                         |                  |        |        |         |
| TNMHC Concentration, as CH4     | ppm              | 2058   |        | 2058    |
| TNMHC Concentration, as CH4     | mg/dscf          | 39.32  |        | 39.32   |
| TNMHC Emission Rate, as CH4     | lb/hr            | 7.91   |        | 8.13    |
|                                 |                  |        |        |         |

## **EXPANSION AND F-FACTOR CALC. METHOD**

 Client:
 Bradley Landfill
 Date:
 4/21/2005

 Location:
 Sun Valley, CA
 Job #:
 W07-042

 Unit:
 Flare #3
 Run#:
 1

Fuel temperature \_\_\_\_\_\_ deg. F \_\_\_\_\_ Std. Temp. \_\_\_\_\_ 60 \_\_deg. F \_\_\_\_\_ Fuel Pressure \_\_\_\_\_\_ psi \_\_\_\_\_ cfm \_\_\_\_ Fuel Flow Rate \_\_\_\_\_ cfm \_\_\_\_ Fuel Flow \_\_\_\_\_ 1521 \_\_dscfm Exhaust Outlet O2 \_\_\_\_\_\_ 11.11 \_\_%

| COMPONENTS     | ;  | MOLE % | HHV<br>btu/ft3 | LLV<br>btu/ft3 | Exp Factor dscf/scf fue |
|----------------|----|--------|----------------|----------------|-------------------------|
| Oxygen         |    | 4.20   |                |                | 0.042                   |
| Nitrogen       |    | 32.96  |                |                | 0.330                   |
| Carbon Dioxide |    | 28.90  |                |                | 0.289                   |
| Methane        |    | 33.95  | 342,90         | 308.74         | 2.910                   |
| Ethane         | C2 |        | 0.00           | 0.00           | 0.000                   |
| Propane        | C3 |        | 0.00           | 0.00           | 0.000                   |
| lso-Butane     | C4 |        | 0.00           | 0.00           | 0.000                   |
| N-Butane       |    |        | 0.00           | 0.00           | 0.000                   |
| Iso-Pentane    | C5 |        | 0.00           | 0.00           | 0.000                   |
| N-Pentane      |    |        | 0.00           | 0.00           | 0.000                   |
| Hexane         | C6 |        | 0.00           | 0.00           | 0.000                   |
| Heptane        | C7 |        | 0.00           | 0.00           | 0.000                   |
| Octane         | C8 |        | 0.00           | 0.00           | 0.000                   |
| Nonane         | C9 |        | 0.00           | 0.00           | 0.000                   |
| Total          |    | 100.00 | 342.90         | 308.74         | 3.57                    |

### **CALCULATIONS**

**EXHAUST FLOW RATE, Q** = (scfm\*Exp Fac)\*(20.92(20.92-%O2)

11579 DSCFM

**EPA F-Factor** = (scf exhaust/scf fuel)/(btu/scf fuel)\*(1000000 btu/MMbtu)

10411 dscf/Mmbtu

## **EXPANSION AND F-FACTOR CALC. METHOD**

 Client:
 Bradley Landfill
 Date:
 4/21/2005

 Location:
 Sun Valley, CA
 Job #:
 W07-042

 Unit:
 Flare #3
 Run#:
 2

Fuel temperature deg. F Std. Temp. 60 deg. F
Fuel Pressure psi
Fuel Flow Rate cfm Fuel Flow 1606 dscfm
Exhaust Outlet O2 11.15 %

Barometric Pressure 29.07

|                |    |        | HHV     | LLV     | Exp Factor   |
|----------------|----|--------|---------|---------|--------------|
| COMPONENTS     |    | MOLE % | btu/ft3 | btu/ft3 | dscf/scf fue |
| Oxygen         | Γ  | 4.20   |         |         | 0.042        |
| Nitrogen       | Ī  | 32.96  |         |         | 0.330        |
| Carbon Dioxide | Ī  | 28.90  |         |         | 0.289        |
| Methane        | Ī  | 33.95  | 342.90  | 308.74  | 2.910        |
| Ethane         | C2 |        | 0.00    | 0.00    | 0.000        |
| Propane        | СЗ |        | 0.00    | 0.00    | 0.000        |
| Iso-Butane     | C4 | ļ      | 0.00    | 0.00    | 0.000        |
| N-Butane       |    |        | 0.00    | 0.00    | 0.000        |
| Iso-Pentane    | C5 | 1      | 0.00    | 0.00    | 0.000        |
| N-Pentane      |    |        | 0.00    | 0.00    | 0.000        |
| Hexane         | C6 |        | 0.00    | 0.00    | 0.000        |
| Heptane        | C7 |        | 0.00    | 0.00    | 0.000        |
| Octane         | C8 |        | 0.00    | 0.00    | 0.000        |
| Nonane         | C9 |        | 0.00    | 0.00    |              |
| Total          |    | 100.00 | 342.90  | 308.74  | 3.57         |

### **CALCULATIONS**

**EXHAUST FLOW RATE, Q** = (scfm\*Exp Fac)\*(20.92(20.92-%O2)

12274 DSCFM

**EPA F-Factor** = (scf exhaust/scf fuel)/(btu/scf fuel)\*(1000000 btu/MMbtu)

10411 dscf/Mmbtu

Facility: Bradley Landfill

Source: Flare #3 Job No.: W07-042 Date: 4/21/2005

### **TOTAL COMBUSTION ANALYSIS RESULTS**

| Sample ID<br>Run Number        | Inlet<br>1A | Inlet  | A.,     |
|--------------------------------|-------------|--------|---------|
| Null Null Del                  | IA          | 1B     | Average |
| Methane in Tank                | 351000      | 328000 | 339500  |
| TNMHC,Tank (Noncond.)          | 802         | 825    |         |
| TNMHC - Condensables           | 1417.3      | 1071.9 |         |
| TNMHC - Total                  | 2219.3      | 1896.5 |         |
| CO Concentration (ppm)         | 214         | 201    | 207.5   |
| CO2 Concentration (ppm)        | 299000      | 279000 | 289000  |
| O2 Concentration (%)           | 3.81        | 4.58   | 4.20    |
| Sample Parameters              |             |        |         |
| Tank Number                    | K           | J      |         |
| Trap Number                    | ĸ           | Ň      |         |
| Sample Tank Volume (I)         | 12.202      | 12.051 |         |
| Initial Pressure (Torr)        | 2.5         | 2.5    |         |
| Initial Temperature (deg. K)   | 292         | 292    |         |
| Final Pressure (mm Hg)         | 312         | 377    |         |
| Final Temperature (deg. K)     | 292         | 292    |         |
| Sample Volume (I)              | 4.99        | 5.96   |         |
| Analysis Pressure (mm Hg)      | 820         | 820    |         |
| Analysis Temperature (deg. K)  | 292         | 292    |         |
| ICV Volume (i)                 | 2.266       | 2.266  |         |
| ICV Final Pressure (mm Hg)     | 800         | 800    |         |
| ICV Final Temperature (deg. K) | 292         | 292    |         |
| CO2 in ICV (ppm)               | 3120        | 2820   |         |
| TNMHC,Trap (Condensables)      | 1417        | 1072   |         |
| Stack Total TNMHC              | 2219        | 1897   | 2058    |
|                                |             |        |         |

NOTE: All hydrocarbon values are in terms of ppm, v/v, as methane.

| Facility:<br>Source:<br>Job No.:<br>Date: | Bradley Landfill<br>Flare #3<br>W07-042<br>04/21/05 |                            |                     |                            | Run No.: 1<br>Fuel: LFG<br>Std. O2: 15 |
|-------------------------------------------|-----------------------------------------------------|----------------------------|---------------------|----------------------------|----------------------------------------|
|                                           |                                                     | O2<br>%                    | CO2<br>%            | NOx<br>ppm                 | CO<br>ppm                              |
| Range:<br>Span:                           |                                                     | 25<br>12.05                | 20<br>6.99          | 25<br>13.00                | 100<br>50.80                           |
| Low:<br>High:                             |                                                     | 20.01                      | 12.01               | 20.00                      | 80.20                                  |
| Values                                    |                                                     | ** POST-T                  | EST DRIFT           | (DIRECT)**                 |                                        |
| Zero:<br>Span:                            |                                                     | 0.00                       | 0.00<br>6.80        | 0.13<br>13.00              | 0.00                                   |
| Percent Drift                             |                                                     | 11.55                      | 0.801               | 15,00                      | 50.00                                  |
| Zero:<br>Span:                            |                                                     | 0.00<br>-0.68              | 0.00<br>-0.95       | 0.50<br>0.00               | 0.00                                   |
| opan.                                     |                                                     |                            | -0.95<br>E-TEST BIA |                            | -0.80                                  |
| Vatues<br>Zero:                           |                                                     | 0.00                       |                     |                            |                                        |
| Span:                                     |                                                     | 12.00                      | 0.20<br>6.80        | 0.00<br>12.75              | 0.00<br>50.00                          |
| Values                                    |                                                     | ** POS                     | ST-TEST BIA         | <b>√S **</b>               |                                        |
| Zero;                                     |                                                     | 0.00                       | 0.00                | 0.13                       | 0.00                                   |
| Span:                                     |                                                     | 11.88                      | 6.80                | 13.00                      | 50.00                                  |
| Zero Average                              |                                                     | 0.00                       | CORRECTI<br>0.10    | 0.06                       | 0.00                                   |
| Span Average                              |                                                     | 11.94                      | 6.80                | 12.88                      | 50.00                                  |
| Percent Drift                             |                                                     | ** POST-                   | TEST DRIFT          | Γ(BIAS)**                  |                                        |
| Zero:<br>Span:                            |                                                     | 0.00<br>0.48               | 1.00<br>0,00        | -0.50<br>-1.00             | 0.00<br>0.00                           |
| Blas-Corrected Co<br>Blas-Corrected Co    |                                                     | 11.11                      | 8.56                | 18.3 <del>6</del><br>11.06 | 1.74<br>1.05                           |
|                                           | **                                                  | RAW AVERA                  | GE CONCE            | NTRATION '                 | <del>•*</del>                          |
| Average:                                  |                                                     | 11,01                      | 8.30                | 18.15                      | 1.72                                   |
| O2 adjust:<br>Date                        | 15.0<br>Time                                        | 02                         | CO2                 | 10.83<br>NOx               | 1.02<br>CO                             |
| 21-Apr-05<br>21-Apr-05                    | 910<br>911                                          | 11.13<br>11.14             | 6.90                | 16.75                      | 2.52 Port A                            |
| 21-Арг-05                                 | 912                                                 | 11.14                      | 8.27<br>8.08        | 16.60<br>16.57             | 1.95<br>1.79                           |
| 21-Apr-05<br>21-Apr-05                    | 913                                                 | 11.20                      | 8.26                | 17.35                      | 1.57                                   |
| 21-Apr-05<br>21-Apr-05                    | 914<br>915                                          | 10.95<br>10.90             | 8.49<br>8.39        | 17.96                      | 1.80                                   |
| 21-Apr-05                                 | 916                                                 | 10.87                      | 8.35                | 18.68<br>18.39             | 2.60<br>2.00                           |
| 21-Apr-05<br>21-Apr-05                    | 917                                                 | 11.04                      | 8.33                | 18.07                      | 1.75                                   |
| 21-Apr-05                                 | 918<br>919                                          | 10.98<br>10.95             | 8.41<br>8.37        | 17.92<br>18.03             | 1.85                                   |
| 21-Apr-05                                 | 920                                                 | 10.81                      | 8.53                | 18.49                      | 1.84<br>2.25                           |
| 21-Apr-05<br>21-Apr-05                    | 921<br>922                                          | 10.8 <del>6</del><br>11.05 | 8,38<br>8,26        | 18.35                      | 2.10                                   |
| 21-Apr-05                                 | 923                                                 | 11.14                      | 8.17                | 18.12<br>17.81             | 2.60<br>4.79                           |
| 21-Apr-05<br>21-Apr-05                    | 924                                                 | 10.95                      | 8.51                | 18.01                      | 3.93                                   |
| 21-Apr-05                                 | 925<br>926                                          | 10.69<br><b>10.6</b> 1     | 8.66<br>8.67        | 19.27<br>19.36             | 2.44<br>1.88                           |
| 21-Apr-05                                 | 927                                                 | 10.66                      | 8.65                | 18.98                      | 1.41                                   |
| 21-Apr-05<br>21-Apr-05                    | 928<br>929                                          | 10.72                      | 8.47                | 18.82                      | 1.65                                   |
| 21-Арг-05                                 | 930                                                 | 10.76<br>10.75             | 8.49<br>8.59        | 18.35<br>18.53             | 1.41<br>0.98                           |
| 21-Apr-05                                 | 931                                                 | 10.78                      | 8.44                | 18.43                      | 0.93                                   |
| 21-Apr-05<br>21-Apr-05                    | 932<br>933                                          | 10.97<br>10.90             | 8.31<br>8.36        | 18.16<br>18.24             | 0.82                                   |
| 21-Apr-05                                 | 934                                                 | 10.87                      | 8.49                | 18.50                      | 0,98<br>1.04                           |
| 21-Apr-05<br>21-Apr-05                    | 935                                                 | 10.63                      | 8.73                | 18.88                      | 1.16                                   |
| 21-Apr-05<br>21-Apr-05                    | 936<br>937                                          | 10.67<br>10.89             | 8.50<br>8.27        | 18.53<br>17.97             | 0. <del>9</del> 0<br>1.23              |
| 21-Apr-05                                 | 938                                                 | 11.12                      | 8.23                | 17.42                      | 1.41                                   |
| 21-Apr-05<br>21-Apr-05                    | 939<br>940                                          | 11.09                      | 8.22                | 17.49                      | 1.78                                   |
| 21-Apr-05                                 | 955                                                 | 10.92<br>10.50             | 8.43<br>8.74        | 17.94<br>20.47             | 1.29<br>-0.47 Port B                   |
| 21-Apr-05                                 | 956                                                 | 11.04                      | 8.13                | 18.69                      | -0.25                                  |
| 21-Apr-05<br>21-Apr-05                    | 957<br>958                                          | 11.26                      | 8.16                | 18.44                      | 0.67                                   |
| 21-Apr-05<br>21-Apr-05                    | 959                                                 | 11.07<br>10,99             | 8.30<br>8.31        | 17.96<br>18.07             | 1.34<br>1.89                           |
| 21-Apr-05                                 | 1000                                                | 10.99                      | 8.37                | 18.45                      | 1.89                                   |
| 21-Apr-05<br>21-Apr-05                    | 1001                                                | 10.84                      | 8.48                | 18.61                      | 1.89                                   |
| 21-Apr-05<br>21-Apr-05                    | 1002<br>1003                                        | 11.15<br>11.33             | 8.10<br>7.97        | 18.02<br>17.79             | 2.18<br>2.44                           |
|                                           |                                                     |                            |                     |                            |                                        |

| 21-Apr-05 | 1004 | 11.18 | 8.21 | 18.24              | 3.31 |
|-----------|------|-------|------|--------------------|------|
| 21-Apr-05 | 1005 | 11.10 | 8.31 | 18.43              | 2.58 |
| 21-Apr-05 | 1006 | 11.00 | 8.37 | 18.46              | 2,69 |
| 21-Apr-05 | 1007 | 10.86 | 8,34 | 18,23              | 3,38 |
| 21-Apr-05 | 1008 | 10.82 | 8.63 | 18.71              | 2.94 |
| 21-Apr-05 | 1009 | 11.11 | 8.19 | 17.88              | 1.89 |
| 21-Apr-05 | 1010 | 10.99 | 8.33 | 18.04              | 1,15 |
| 21-Apr-05 | 1011 | 11,14 | 8.25 | 17.86              | 1.11 |
| 21-Apr-05 | 1012 | 10.99 | 8,35 | 18.28              | 0.80 |
| 21-Apr-05 | 1013 | 11.11 | 8.24 | 17. <del>9</del> 7 | 1.06 |
| 21-Арг-05 | 1014 | 10.90 | 8.44 | 18.36              | 0.98 |
| 21-Apr-05 | 1015 | 11.02 | 8.13 | 18.04              | 0.61 |
| 21-Арг-05 | 1016 | 11.37 | 8.02 | 17.87              | 0.90 |
| 21-Apr-05 | 1017 | 11.32 | 8.11 | 17.90              | 1.11 |
| 21-Apr-05 | 1018 | 11.26 | 8.06 | 17.79              | 0.91 |
| 21-Apr-05 | 1019 | 11.30 | 8.06 | 17.46              | 1.30 |
| 21-Apr-05 | 1020 | 11.36 | 8.03 | 17.83              | 1.26 |
| 21-Apr-05 | 1021 | 11.44 | 8.02 | 17.69              | 1.25 |
| 21-Apr-05 | 1022 | 11,34 | 8.21 | 17.90              | 1.89 |
| 21-Apr-05 | 1023 | 10,84 | 8.37 | 18.47              | 2.46 |
| 21-Apr-05 | 1024 | 11.30 | 8.17 | 17.87              | 2.10 |
| 21-Apr-05 | 1025 | 11.21 | 8.16 | 17.74              | 2.48 |
|           |      |       |      |                    |      |

| Facility:<br>Source;<br>Job No.:<br>Date: | Bradley Landfill<br>Flare #3<br>W07-042<br>04/21/05 |                |                   |                | Run No.: 2<br>Fuel: LFG<br>Std. O2: 15 |
|-------------------------------------------|-----------------------------------------------------|----------------|-------------------|----------------|----------------------------------------|
|                                           |                                                     | O2<br>%        | CO2<br>%          | NOx<br>ppm     | CO<br>ppm                              |
| Range:<br>Span:<br>Łow:                   |                                                     | 25<br>12.05    | 20<br>6.99        | 25<br>13,00    | 100<br>50.80                           |
| High:                                     |                                                     | 20.01          | 12.01             | 20.00          | 80,20                                  |
| Values                                    |                                                     | ** POST-T      | EST DRIFT         | (DIRECT)**     |                                        |
| Zero:<br>Span;                            |                                                     | 0,00<br>11,88  | -0.20<br>6.80     | 0.00<br>13.13  | 0.00<br>50.00                          |
| •                                         |                                                     | 11,00          | 0.00              | 10.10          |                                        |
| Percent Drift<br>Zero:                    |                                                     | 0.00           | -1.00             | 0.00           | 0.00                                   |
| Span:                                     |                                                     | -0.68          | -0.95             | 0.50           | -0.80                                  |
| Values                                    |                                                     | ** PR          | E-TEST BIA        | S **           |                                        |
| Zero:                                     |                                                     | 0.00<br>11.88  | 0.00<br>6.80      | 0.13<br>13.00  | 0.00<br>50.00                          |
| Span;                                     |                                                     |                |                   | •              | 30.00                                  |
| Values                                    |                                                     | ** PO          | ST-TEST BIA       | AS **          |                                        |
| Zero:<br>Span:                            |                                                     | 0.00<br>11,88  | -0.20<br>6.80     | 0.00<br>13.13  | 0.00<br>50.00                          |
| Орап,                                     |                                                     |                |                   | •              | 30,00                                  |
| Zero Average                              |                                                     | 0.00           | CORRECTI<br>-0.10 | 0.06           | 0.00                                   |
| Span Average                              |                                                     | 11.88          | 6.80              | 13.06          | 50.00                                  |
| D D-'4                                    |                                                     | ** POST        | TEST DRIFT        | (BIAS)**       |                                        |
| Percent Drift<br>Zero:                    |                                                     | 0.00           | 1.00              | 0.50           | 0.00                                   |
| Span:                                     |                                                     | 0.00           | 0.00              | -0.50          | 0.00                                   |
| Blas-Corrected C<br>Blas-Corrected C      | concentration<br>conc.(O2 adjusted)                 | 11.15          | 8.89              | 17.91<br>10,84 | 3.27<br>1.98                           |
|                                           | **                                                  | RAW AVERA      | GE CONCE          | NTRATION       | **                                     |
| Average:                                  |                                                     | 10.99          | 8.68              | 17.98          | 3.22                                   |
| O2 adjust:<br>Date                        | 15.0<br>Time                                        | 02             | CO2               | 10.70<br>NOx   | 1.92<br>CO                             |
| 21-Apr-05                                 | 1112<br>1113                                        | 11.72<br>11,62 | 7.98<br>8.06      | 16.22<br>16.37 | 11.95 Port A<br>13,45                  |
| 21-Apr-05<br>21-Apr-05                    | 1114                                                | 11.50          | 8.21              | 16.67          | 3.19                                   |
| 21-Apr-05                                 | 1115<br>1116                                        | 11.26<br>10.94 | 8.53<br>8.81      | 17.94<br>18,84 | 8.70<br>3.40                           |
| 21-Apr-05<br>21-Apr-05                    | 1117                                                | 10.94          | 8.82              | 18.95          | -0.06                                  |
| 21-Apr-05                                 | 1118                                                | 10.99          | 8.68              | 18.66          | -0.53                                  |
| 21-Apr-05<br>21-Apr-05                    | 1119<br>1120                                        | 11.09<br>11.28 | 8.57<br>8.33      | 18.41<br>18.07 | -0.44<br>-0.19                         |
| 21-Apr-05                                 | 1121                                                | 11.60          | 8.10              | 16.82          | 7.18                                   |
| 21-Apr-05<br>21-Apr-05                    | 1122<br>1123                                        | 11.55<br>11.16 | 8.13<br>8.64      | 16.68<br>17.35 | 14.96<br>21.73                         |
| 21-Apr-05<br>21-Apr-05                    | 1124                                                | 10.91          | 8.74              | 17.43          | 10.76                                  |
| 21-Apr-05                                 | 1125                                                | 10.75          | 9.02              | 18.39          | 1.67                                   |
| 21-Apr-05<br>21-Apr-05                    | 1126<br>1127                                        | 10.51<br>10.41 | 9.21<br>9.30      | 18.87<br>18.80 | 0.04<br>-0.13                          |
| 21-Apr-05                                 | 1128                                                | 10.43          | 9.22              | 18.89          | 0.12                                   |
| 21-Apr-05<br>21-Apr-05                    | 1129<br>1130                                        | 10.67<br>10.44 | 9.01<br>9.24      | 18.47<br>18.41 | -0.04<br>-0.32                         |
| 21-Apr-05                                 | 1131                                                | 10.56          | 9.06              | 17.98          | -0.30                                  |
| 21-Арг-05                                 | 1132                                                | 10.59          | 9.06              | 18.25          | -0.23                                  |
| 21-Apr-05<br>21-Apr-05                    | 1133<br>1134                                        | 10.49<br>10.46 | 9.20<br>9.16      | 18.21<br>18.07 | -0.15<br>-0.13                         |
| 21-Apr-05                                 | 1135                                                | 10.82          | 8.86              | 17.53          | 0.26                                   |
| 21-Apr-05                                 | 1136<br>1137                                        | 10.76<br>10.82 | 8.82<br>8.88      | 17.16<br>17.37 | 0.99<br>2.43                           |
| 21-Apr-05<br>21-Apr-05                    | 1138                                                | 10.02          | 8.88              | 17.72          | 2.01                                   |
| 21-Apr-05                                 | 1139                                                | 10.80          | 8.90              | 18.24          | 2.11                                   |
| 21-Apr-05<br>21-Apr-05                    | 1140<br>1141                                        | 10.80<br>10.90 | 8.79<br>8.84      | 18.43<br>18.37 | 2.38<br>2.15                           |
| 21-Apr-05                                 | 1142                                                | 10.96          | 8,56              | 17.97          | 2.12                                   |
| 21-Арг-05                                 | 1150                                                | 11.14          | 8.56              | 18.36          | 0.15 Port B                            |
| 21-Apr-05<br>21-Apr-05                    | 1151<br>1152                                        | 11.18<br>11.30 | 8.45<br>8.45      | 18.21<br>18.11 | -0,56<br>-0.23                         |
| 21-Apr-05                                 | 1153                                                | 11.22          | 8.38              | 17.98          | 0.53                                   |
| 21-Apr-05                                 | 1154                                                | 11.12          | 8,57              | 18.28          | -0.20                                  |
| 21-Apr-05<br>21-Apr-05                    | 1155<br>1156                                        | 11.08<br>10.96 | 8.57<br>8.70      | 18.16<br>18.49 | -0.09<br>-0.06                         |
| 21-Apr-05<br>21-Apr-05                    | 1157                                                | 10.98          | 8.67              | 18.50          | -0.37                                  |
| 21-Apr-05                                 | 1158                                                | 11.16          | 8.34              | 17.63          | -0.29                                  |

| 21-Apr-05 | 115 <del>9</del> | 11.75 | 7.91 | 15.95 | 6.55          |
|-----------|------------------|-------|------|-------|---------------|
| 21-Apr-05 | 1200             | 11.71 | 8.03 | 16.09 | 14.90         |
| 21-Apr-05 | 1201             | 11.45 | 8.23 | 17.26 | 6.95          |
| 21-Apr-05 | 1202             | 11.21 | 8.55 | 17.91 | 1.34          |
| 21-Apr-05 | 1203             | 10.94 | 8.61 | 18.07 | -0.18         |
| 21-Apr-05 | 1204             | 10.77 | 9.03 | 19.20 | 0.69          |
| 21-Apr-05 | 1205             | 10.65 | 8.98 | 19.10 | -0.15         |
| 21-Apr-05 | 1206             | 10.80 | 8.84 | 18.69 | -0.27         |
| 21-Apr-05 | 1207             | 10.72 | 8.96 | 18.82 | -0.28         |
| 21-Арг-05 | 1208             | 10.82 | 8.80 | 18.43 | -0.20         |
| 21-Apr-05 | 1209             | 11.11 | 8.39 | 17.19 | 0.91          |
| 21-Apr-05 | 1210             | 11.52 | 8.13 | 16.27 | 12.11         |
| 21-Apr-05 | 1211             | 11.57 | 8.08 | 16.09 | 22.32         |
| •         | 1212             | 11.49 | 8.18 | 16.47 | 18.18         |
| 21-Apr-05 | 1213             | 11.13 | 8.55 | 17.84 | 9.02          |
| 21-Apr-05 |                  | 10.74 | 8.97 | 19.01 | 1.24          |
| 21-Apr-05 | 1214             |       |      | 19.26 | -0.35         |
| 21-Apr-05 | 1215             | 10.52 | 9.16 |       |               |
| 21-Apr-05 | 1216             | 10.59 | 9.06 | 19.00 | -0. <b>48</b> |
| 21-Apr-05 | 1217             | 10.59 | 9.12 | 19.41 | -0.51         |
| 21-Apr-05 | 1218             | 10.55 | 9.04 | 19.45 | -0.43         |
| 21-Арт-05 | 1219             | 10.95 | 8.57 | 18.00 | -0.22         |
| 21-Apr-05 | 1220             | 11.16 | 8.45 | 17.73 | 0.65          |
| 21-Api-00 | ILLO             |       |      |       |               |

Facility: Waste Management Source: Flare #3 Job No.: W07-039 Test Date: 4/2104

| PRETEST        | CALIBRATIO | N ERROR   |           |           |
|----------------|------------|-----------|-----------|-----------|
| LEAK CHECK     |            |           |           |           |
| RANGE:         | 25<br>O2   | 20<br>CO2 | 100<br>CO | 25<br>NOx |
| ZERO           | 02         | UO2       |           | 1101      |
| Instrument     | 0.00       | 0.00      | 0.00      | 0.00      |
| Cylinder       | 0.00       | 0,00      | 0.00      | 0.00      |
| Difference (%) | 0.00       | 0.00      | 0,00      | 0.00      |
| LOW LEVEL      |            |           |           |           |
| Instrument     |            |           |           |           |
| Cylinder       |            |           |           |           |
| Difference (%) | 0.00       | 0.00      | 0.00      | 0,00      |
| MID LEVEL      |            |           |           |           |
| instrument     | 12.10      | 7.00      | 51.00     | 13.00     |
| Cylinder       | 12.05      | 6.99      | 50,80     | 13.00     |
| Difference (%) | 0.20       | 0,05      | 0.20      | 0.00      |
| HIGH LEVEL     |            |           |           |           |
| Instrument     | 20.13      | 12.30     | 80.50     | 20,38     |
| Cylinder       | 20,01      | 12.01     | 80,20     | 20.00     |
| Difference (%) | 0.46       | 1.45      | 0.30      | 1.52      |

| PRETEST         | LINEARITY |            |
|-----------------|-----------|------------|
|                 |           |            |
|                 | Cylinder  | Instrument |
|                 |           | •          |
|                 | 92        |            |
| Zero            | 0,00      | 0.00       |
| High Level      | 20.01     | 20.13      |
| Stope           | 0.99      |            |
| Intercept       | 0,00      | Status     |
| Predicted Value | 12.12     | <1         |
| Linearity (%)   | 80,0      | PASS       |
|                 | CO2       |            |
| Zero            | 0.00      | 0.00       |
| High Level      | 12.01     | 12.30      |
| Stope           | 0.98      |            |
| Intercept       | 0.00      | Status     |
| Predicted Value | 7.16      | <1         |
| Linearity (%)   | 0,79      | PASS       |
|                 | <u>co</u> |            |
| Zero            | 0.00      | 0.00       |
| High Level      | 80,20     | 80,50      |
| Slope           | 1.00      |            |
| intercept       | 0.00      | Status     |
| Predicted Value | 50.99     | <1         |
| Linearity (%)   | 0.01      | PASS       |
|                 | NOX       |            |
| Zera            | 0.00      | 0.00       |
| High Level      | 20.06     | 20.38      |
| Slope           | 0.98      |            |
| Intercept       | 0.00      | Status     |
| Predicted Value | 13.25     | <1         |
| Linearity (%)   | 0,99      | PASS       |
| 1               |           |            |

|           | #1 | #2 | #3 |
|-----------|----|----|----|
| Jpscale   |    |    |    |
| NOx       | 23 |    |    |
| co        | 54 |    |    |
| 02        | 30 |    |    |
| CO2       | 22 |    |    |
| Downscale |    |    |    |
| NOx       | 21 |    |    |
| CO        | 51 |    |    |
| 02        | 28 |    |    |
| CO2       | 21 |    |    |

| NO2 CONVERTER | EFFICIENCY |       |        |
|---------------|------------|-------|--------|
|               | ppm        | %     | stalus |
| Cylinder(Co)  | 18.50      |       |        |
| NO Mode(C1)   | 0.30       |       |        |
| NOx Mode(C2)  | 18.13      |       |        |
| D1            | 18.20      |       |        |
| D2            | 17.83      |       |        |
| D3            | 0.37       |       |        |
| CÉ            |            | 97,97 |        |
| CE > 90 %     |            |       | PASS   |

| LEAK CHECK  ZERO Instrument Cylinder Difference (%)  LOW LEVEL | O2<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00 | NOx<br>0.13<br>0.00 |
|----------------------------------------------------------------|----------------------------|------------------------------|--------------|---------------------|
| Instrument<br>Cylinder<br>Difference (%)<br>LOW LEVEL          | 00.00<br>00,0              | 0.00                         | 0.00         | 0.13                |
| Instrument<br>Cylinder<br>Difference (%)<br>LOW LEVEL          | 00,0                       | 0.00                         | 0.00         |                     |
| Cylinder<br>Difference (%)<br>LOW LEVEL                        | 00,0                       | 0.00                         | 0.00         |                     |
| Difference (%)                                                 |                            |                              |              | 0.00                |
| LOW LEVEL                                                      | 0.00                       | 0,00                         |              | 5,65                |
|                                                                |                            |                              | 0.00         | 0.50                |
|                                                                |                            |                              |              |                     |
| Jastrument                                                     |                            |                              |              |                     |
| Cylinder                                                       |                            |                              |              |                     |
| Difference (%)                                                 | 0.00                       | 0.00                         | 0,00         | 0.00                |
| MID LEVEL                                                      | _                          |                              |              |                     |
| Instrument                                                     | 12.00                      | 6.90                         | 50.20        | 12.88               |
| Cylinder                                                       | 12.05                      | 6.99                         | 50.80        | 13.00               |
| Difference (%)                                                 | -0.20                      | -0.45                        | -0.60        | -0.48               |
| HIGH LEVEL                                                     | _                          |                              |              |                     |
| Instrument                                                     | 20,00                      | 12.19                        | 80.06        | 20.00               |
| Cylinder                                                       | 20.01                      | 12,01                        | 80.20        | 20.00               |
| Difference (%)                                                 | -0,04                      | 0.90                         | -0,20        | 0.00                |

| OST TEST                     | LINEARITY |               |
|------------------------------|-----------|---------------|
|                              | Cyfinder  | Instrument    |
|                              | 02        |               |
| Zero                         | 0.00      | 0.00          |
| High Level                   | 20.01     | 20.00         |
| Slope                        | 1.00      | 20,00         |
|                              | 0.00      | Status        |
| Intercept<br>Predicted Value | 12.04     | ⇒(atus<br><1  |
| Linearity (%)                | 0.18      | PASS          |
| Linearny (36)                | CO2       | 7733          |
| Zem                          | 0.00      | 0.00          |
| High Level                   | 12.01     | 12.19         |
| -                            | 0.99      | 12.10         |
| Slope<br>Intercept           | 0.00      | Status        |
| Predicted Value              | 7.09      | <1            |
|                              | 0.97      | PASS          |
| Linearity (%)                | CO        | FASS          |
| _                            | 0.00      | 0.00          |
| Zero                         |           |               |
| High Level                   | 80,20     | 80.00         |
| Slope                        | 1.00      |               |
| Intercept                    | 0.00      | Status        |
| Predicted Value              | 50.67     | <1<br>PASS    |
| Linearity (%)                | 0.47      | PASS          |
| _                            | NOX       | 6.40          |
| Zero                         | 0,00      | 0.13<br>20.00 |
| High Level                   | 20.00     | 20.00         |
| Stope                        | 1.01      |               |
| intercept                    | -0.13     | Status        |
| Predicted Value              | 13.04     | <1            |
| Linearity (%)                | 0,68      | PASS          |

Table 5-2
Trace Organic Species
Destruction Efficiency Results
Waste Management - Bradley Landfill
Flare #3
April 21, 2005

|                       |                | INLET<br>Flow rate    | 1563                | dscfm          | OUTLET<br>Flow rate     | 11926.42            | dscfm             |
|-----------------------|----------------|-----------------------|---------------------|----------------|-------------------------|---------------------|-------------------|
| Species               | Conc.          | Conc.                 | Em. Rate            | Conc.          | Conc.                   | Em. Rate<br>(lb/hr) | Dest. Eff.<br>(%) |
| -lydrogen Sulfide     | (ppb)<br>23300 | (mg/dscf)<br>9.50E-01 | (lb/hr)<br>1.96E-01 | (ppb)<br>< 500 | (mg/dscf)<br>< 2.04E-02 | < 3.21E-02          | > 83.63           |
| 3enzene               | 7240           | 6.75E-01              | 1.40E-01            | 2,3            | 2.11E-04                | 3.32E-04            | 99.76             |
| Benzychloride         | < 40           | < 6.07E-03            | < 1.26E-03          | < 0.8          | < 1.21E-04              | < 1.92E-04          | NA                |
| Chlorobenzene         | 321            | 4.34E-02              | 8,96E-03            | < 0.3          | < 4.05E-05              | < 6.39E-05          | > 99.29           |
| Dichlorobenzenes      | 1380           | 2.42E-01              | 5.01E-02            | < 1.1          | < 1.93E-04              | < 3.05E-04          | > 99.39           |
| 1,1-dichloroethane    | 140            | 1.66E-02              | 3.43E-03            | < 0.3          | < 3.55E-05              | < 5.60E-05          | > 98.37           |
| 1,2-dichloroethane    | 50             | 5.96E-03              | 1.23E-03            | < 0.3          | < 3.55E-05              | < 5.60E-05          | > 95.46           |
| 1,1-dichloroethylene  | 45             | 5.17E-03              | 1.07E-03            | < 0.3          | < 3.48E-05              | < 5.49E-05          | > 94.87           |
| Dichloromethane       | 250            | 2.54E-02              | 5.25E-03            | 1.28           | 1.30E-04                | 2.05E-04            | 96.09             |
| 1,2-Dibromoethane     | < 30           | < 6.74E-03            | < 1.39E-03          | < 0.3          | < 6.74E-05              | < 1.06E-04          | NA                |
| Perchloroethene       | 1120           | 3.17E-01              | 6,56E-02            | < 0.2          | < 5,66E-05              | < 8.94E-05          | > 99.86           |
| Carbon tetrachloride  | < 30           | < 5.52E-03            | < 1.14E-03          | < 0.2          | < 3,68E-05              | < 5.81E-05          | NA                |
| Toluene               | 22000          | 2.42E+00              | 5.00E-01            | 0.37           | 4.07E-05                | 6,42E-05            | 99.99             |
| 1,1,1-trichloroethane | < 30           | < 4.77E-03            | < 9.86E-04          | < 0.2          | < 3.18E-05              | < 5,02E-05          | NA                |
| Trichloroethene       | 418            | 6,54E-02              | 1.35E-02            | < 0.2          | < 3.13E-05              | < 4.94E-05          | > 99.63           |
| Chloroform            | < 30           | < 4.27E-03            | < 8.82E-04          | < 0.2          | < 2.84E-05              | < 4.49E-05          | NA                |
| √inyl Chloride        | 382            | 2.85E-02              | 5,90E-03            | < 0.3          | < 2.24E-05              | < 3.54E-05          | > 99.40           |
| n+p-xylenes           | 12400          | 1.57E+00              | 3.25E-01            | 0.36           | 4.56E-05                | 7.19E-05            | 99.98             |
| o-xylene              | 4500           | 5,70E-01              | 1.18E-01            | < 0.3          | < 3.80E-05              | < 6.00E-05          | > 99.95           |
| ГИМНС                 | 2057907        | 3.94E+01              | 8.14E+00            | 2626           | 5.02E-02                | 7.92E-02            | 99.03             |

Note: All values preceded by "<" are below the detection limit. The reported values are the detection limit.

NA-Not Applicate: Destruction efficiency can not be calculated since both inlet and outlet values are below the detection limit.

**APPENDIX C - Laboratory Results** 

Facility: BRADLEY Source: FLARE 3 Job No.: W07-042 Test Date: 04/20-21/05

### DATA SHEET FOR PARTICULATE MATTER SCAQMD METHOD 5.1

| DATE | SAME | LED. | 04 | /20-21/05 |
|------|------|------|----|-----------|
| DATE | EXTR | ACTE | D: | 04/21/05  |

RUN#1

| DATE EXTRACTED: 04/21/05                                |                   |                      |        |         |         |                            |
|---------------------------------------------------------|-------------------|----------------------|--------|---------|---------|----------------------------|
|                                                         | SAMPLE ID         | BEAKER/<br>FILTER ID | VOLUME | INITIAL | FINAL   | NET WEIGHT(g)              |
| A - FILTER CATCH<br>FILTER ACID<br>FILTER SULFATE       | W07042-M5-F3-1-PF | G5003                | NA     | 0.0845  | 0.0856  | 0.0011<br>0.0000           |
| B - PROBE CATCH<br>PROBE ACID                           |                   |                      |        |         |         | 0.0000<br>0.0000           |
| PROBE SULFATE                                           |                   |                      |        |         |         | 0.0000                     |
| C - IMP.CATCH(INSOL) INSOLUBLE ACID INSOLUBLE SULFATE   | W07042-M5-F3-1-EF | G5039                | 892    | 0.0835  | 0.0851  | 0.0016<br>0.0000<br>0.0000 |
| D - IMP. CATCH (SOL)<br>SOLUBLE ACID<br>SOLUBLE SULFATE | W07042-M5-F3-1-R  | B5077                | 892    | 29.2153 | 29.2222 | 0.0069<br>0.0000<br>0.0000 |
| E - ORGANIC EXTRACT                                     | W07042-M5-F3-1-MC | B5060                | 125    | 30.7603 | 30.7619 | 0.0016                     |
|                                                         |                   |                      |        |         |         |                            |
| TOTAL PARTICULATE                                       | <br>(A+B+C+D+E)   |                      |        |         |         | 0.0112                     |
| SOLID PARTICULATE                                       | (A+B+C+D)         |                      |        |         |         | 0.0096                     |

Facility: BRADLEY Source: FLARE 3 Job No.: W07-042 Test Date: 04/20-21/05

### DATA SHEET FOR PARTICULATE MATTER SCAQMD METHOD 5.1

DATE SAMPLED: 04/20-21/05

DATE EXTRACTED: 04/21/05

RUN#2

| DATE EXTRACTED. 04/21/03                          |                   |                      |        |         |         |                  |
|---------------------------------------------------|-------------------|----------------------|--------|---------|---------|------------------|
|                                                   | SAMPLE ID         | BEAKER/<br>FILTER ID | VOLUME | INITIAL | FINAL   | NET WEIGHT(g)    |
| A - FILTER CATCH<br>FILTER ACID<br>FILTER SULFATE | W07042-M5-F3-2-PF | G3200                | NA     | 0.0848  | 0.0860  | 0.0012<br>0.0000 |
| 1 (2 / 111 / 12 / 12 / 12 / 12 / 12 / 12          |                   |                      |        |         |         | 0.0000           |
| B - PROBE CATCH                                   |                   |                      |        |         |         | 0.0000           |
| PROBE ACID PROBE SULFATE                          |                   |                      |        |         |         | 0.0000           |
|                                                   |                   | G5040                | 850    | 0.0827  | 0.1015  | 0.0188           |
| C - IMP.CATCH(INSOL) INSOLUBLE ACID               | W07042-M5-F3-2-EF | G5040                | 000    | 0.0627  | 0.1013  | 0.0000           |
| INSOLUBLE SULFATE                                 |                   |                      |        |         |         | 0.0000           |
|                                                   |                   |                      |        |         |         |                  |
| D - IMP. CATCH (SOL)                              | W07042-M5-F3-2-R  | B5083                | 850    | 30.2511 | 30.2582 | 0.0071           |
| SOLUBLE ACID                                      |                   |                      |        |         |         | 0.0000           |
| SOLUBLE SULFATE                                   |                   |                      |        |         |         | 0.0000           |
|                                                   |                   |                      |        |         |         |                  |
| E - ORGANIC EXTRACT                               | W07042-M5-F3-2-MC | B5080                | 125    | 31.0275 | 31.0289 | 0.0014           |
|                                                   |                   |                      |        |         |         |                  |
|                                                   |                   |                      |        |         |         |                  |
|                                                   |                   |                      |        |         |         |                  |
| TOTAL PARTICULATE                                 | (A+B+C+D+E)       |                      |        |         |         | 0.0285           |
|                                                   |                   |                      |        |         |         |                  |
| SOLID PARTICULATE                                 | (A+B+C+D)         |                      |        |         |         | 0.0271           |
| SOLD I MICHOOL II                                 | Ç. <del>-</del> / |                      |        |         |         |                  |

Facility: BRADLEY

Source: FLARE 1, 2 AND 3

Job No.: W07-042 Test Date: 04/20-21/05

### DATA SHEET FOR PARTICULATE MATTER SCAQMD METHOD 5.1

DATE SAMPLED: 04/20-21/05

BLANK

| DATE SAMPLED: 04/<br>DATE EXTRACTED: (                                                |                      |                      | t      | SLANK   |         |                                      |
|---------------------------------------------------------------------------------------|----------------------|----------------------|--------|---------|---------|--------------------------------------|
|                                                                                       | SAMPLE ID            | BEAKER/<br>FILTER ID | VOLUME | INITIAL | FINAL   | NET WEIGHT(g)                        |
| A - FILTER CATCH FILTER ACID FILTER SULFATE  B - PROBE CATCH PROBE ACID PROBE SULFATE | W07042-M5.1-FB-PF    | G03223               | NA     | 0.0837  | 0.0837  | 0.0000<br>0.0000<br>0.0000<br>0.0000 |
| C - IMP.CATCH(INSO<br>INSOLUBLE ACID<br>INSOLUBLE SULF                                |                      | G5021                | 500    | 0.0825  | 0.0824  | 0.0000<br>0.0000<br>0.0000           |
| D - IMP. CATCH (SOL<br>SOLUBLE ACID<br>SOLUBLE SULFAT                                 |                      | B5156                | 500    | 22.2328 | 22.2330 | 0.0002<br>0.0000<br>0.0000           |
| E - ORGANIC EXTRA                                                                     | CT W07042-M5.1-FB-MC | B5080                | 125    | 22.4459 | 22.4460 | 0.0001                               |
| TOTAL PARTICULAT                                                                      | E (A+B+C+D+E)        |                      |        |         |         | 0.0003                               |
| SOLID PARTICULATI                                                                     | E (A+B+C+D)          |                      |        |         |         | 0.0002                               |

### CHAIN OF CUSTODY RECORD

|                                                                       | AIN OF CU   | 31001 NE                              | COND     |                     |                       |          |       |                     | ····       |
|-----------------------------------------------------------------------|-------------|---------------------------------------|----------|---------------------|-----------------------|----------|-------|---------------------|------------|
| Client/Project Name Project Lo                                        | cation      | and the same                          | 1.1      | /                   | Λ                     |          |       |                     |            |
| Project No. Project Name of Bradley Kundfill Project No. Field Logboo | Pluid       | FI-Sin                                | Paller   | ME (NE)             | 6 <sup>1</sup>        | AN       | ALYSE | :S                  |            |
| Project No. Field Logboo                                              | k No.       |                                       | المرا    | / <sub>30</sub> V   | 7                     | 7 /      |       |                     | 7          |
| W07-042                                                               |             |                                       |          |                     |                       |          |       |                     |            |
| Sampler: (Signature) Chain of Custo                                   | dy Tape No. |                                       |          |                     |                       |          |       | / /                 |            |
| (Wachto                                                               |             |                                       |          | , Q                 | / /                   | / /      |       |                     |            |
|                                                                       | Т           | 6                                     | Ĩ.       | <b>Š</b> / /        |                       |          |       |                     |            |
| Sample No./ Lab Sample Identification Date Time Number                |             | e of<br>nple                          |          | / /                 |                       | / ,      | / ,   | RI                  | MARKS      |
| WONING-145, 1-F1-1-R 4/20/05                                          | Messon      | 7G/                                   |          |                     | Ť                     |          | Ť     | 1.4 4.4 2. 17       | wer - Paul |
| WETOFIZ-M5.1-F1-1-PF                                                  | 1 (61.00)   |                                       | -        |                     |                       |          |       | Gler                | - Roul     |
| VO-042-NS.1-P1-2-R                                                    |             |                                       | -        |                     |                       |          |       |                     |            |
| 201012 WS.1-81-2-PF                                                   |             | · · · · · · · · · · · · · · · · · · · |          |                     |                       |          |       | hlter               | Auge Paril |
|                                                                       |             |                                       |          |                     |                       |          |       | and in the internal |            |
|                                                                       |             |                                       |          |                     |                       |          |       |                     |            |
| 7                                                                     |             |                                       |          |                     |                       |          |       |                     |            |
|                                                                       |             | <del> </del>                          |          |                     |                       |          |       |                     |            |
| Relinquished by (Signature)                                           | Date        | Time                                  | Receive  | d by: (Sign         | nature)               |          | (     | Date                | Time       |
| ally                                                                  | 7/3/05      |                                       |          |                     |                       | 7        |       |                     | 21.05 153  |
| Relinquished by: (Signature)                                          | Date'       | Time                                  | Receive  | d by: ( <i>Sign</i> | iatu <del>re</del> )" |          |       | Date                | Time       |
| Delin wished how (Cinnet)                                             | Dete        | T:                                    | <u> </u> |                     |                       |          |       |                     |            |
| Relinquished by: (Signature)                                          | Date        | Time                                  | Receive  | d for Labo          | ratory:               | (Signate | ure)  | Date                | Time       |
| Sample Disposal Method:                                               | Disposed    | d of by: ( <i>Sign</i>                | ature)   |                     |                       |          |       | Date                | Time       |
| Journey Disposal Motion.                                              | 2.000000    | . c. b <sub>1</sub> . (cigii          | 2.0.01   |                     |                       |          |       | Pare                | Time       |
| SAMPLE COLLECTOR                                                      | ANALYTI     | CAL LABOR                             | ATORY    |                     |                       |          |       |                     |            |
| HORIZON AIR MEASUREMENT SERVICES, INC                                 |             |                                       |          |                     |                       |          |       |                     |            |
| 996 Lawrence Drive, Suite 108                                         |             | H                                     | ORIT     | 20~                 | 1                     |          |       |                     |            |
| Newbury Park, CA 91320                                                | HORIZON     |                                       |          |                     |                       |          |       |                     |            |
| (805) 498-8781 Fax (805) 498-3173                                     |             |                                       |          |                     |                       |          |       | N.                  | 8639       |
|                                                                       |             |                                       |          |                     |                       |          |       |                     |            |



Atim AA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

### LABORATORY ANALYSIS REPORT

Organic Carbon Analysis in Water Impinger and Methane & TGNMO Analysis in SUMMA Canister Samples from Impinger/Canister Train Sample Collection

Report Date: May 3, 3005

Client: Horizon Air Measurement Services, Inc.

Client Project No.: W07-042

Source Location: Waste Management / Bradley Landfill, Sun Valley, CA.

Source ID: Flare no. 3 Outlet

Date Received: April 21, 2005

Date Analyzed: April 21, & 25, 2005

Methane and total gaseous non-methane organics were measured by flame ionization detection/total combustion analysis (FID/TCA). Organic carbon in water vial samples were measured by Dohrman total organic carbon analyzer, water FID/TCA.

|          |             |             |            |             | Impinger  |          |     |     |  |
|----------|-------------|-------------|------------|-------------|-----------|----------|-----|-----|--|
|          |             |             |            |             | Organic   |          |     |     |  |
| AtmAA    | Sample      | Canister    | Canister   | Canister    | Carbon as | Impinger |     |     |  |
| Lab No.  | ID          | Methane     | Ethane     | TGNMO       | Methane   | Volume   | P₁  | P2  |  |
|          |             |             | (concentra | tion, ppmv) |           | (ml)     | ]   |     |  |
| 01115-31 | S2 Outlet   | <1          | <1         | 2.28        |           |          | 493 | 820 |  |
|          | Impinger H4 |             |            |             | 0.20      | 2.84     |     |     |  |
| 01115-32 | S12 Outlet  | <1          | <1         | 2.23        |           |          | 608 | 820 |  |
|          | Impinger H5 | स्य सम्बद्ध |            |             | 0.15      | 3.15     |     |     |  |
|          |             |             |            |             |           |          |     |     |  |

TGNMO is total gaseous non-methane organics (excluding ethane), reported as ppm methane. Ethane is reported as ppmv methane.

\* Note - Impinger sample results are not field blank corrected. The field blank (impinger H88) contained 0.29 ug carbon as methane, corresponding to 0.10 ppm methane for a 4.40 liter sample.  $P_1$  and  $P_2$  are initial and final pressures measured in mm Hg.

Michael L. Porter Laboratory Director

# QUALITY ASSURANCE SUMMARY (Repeat Analysis)

Source Location: Waste Management / Bradley Landfill, Sun Valley, CA.

Date Received: April 21, 2005 Date Analyzed: April 21, & 25, 2005

| Components   | Sample<br>ID               | Repeat<br>Run #1<br>(Conce | Analysis<br>Run #2<br>entration in | Mean<br>Conc.<br>ppmv) | % Diff.<br>From Mean |
|--------------|----------------------------|----------------------------|------------------------------------|------------------------|----------------------|
| Methane      | S2 Outlet<br>S12 Outlet    | <1<br><1                   | <1<br><1                           |                        |                      |
| Ethane       | S2 Outlet<br>S12 Outlet    | <1<br><1                   | <1<br><1                           |                        |                      |
| TGNMO        | S2 Outlet<br>S12 Outlet    | 2.29<br>2.14               | 2.27<br>2.32                       | 2.28<br>2.23           | 0.44<br>4.0          |
| Impinger TOC | Impinger H4<br>Impinger H5 | 0.19<br>0.15               | 0.2<br>0.14                        | 0.20<br>0.15           | 2.6<br>3.4           |

A set of 2 SUMMA canister/impinger samples, laboratory number 01115-(31 & 32), was analyzed for methane and total gaseous non-methane organics (TGNMO) & TOC. Agreement between repeat analysis is a measure of precision and is shown in the column "% Difference from Mean". The average % Difference from Mean for 4 repeat measurements from the sample set of 2 SUMMA canister/impinger samples is 2.6%.





# 

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

### LABORATORY ANALYSIS REPORT

CO, CH<sub>4</sub>, CO<sub>2</sub>, and TGNMO Analysis in Tanks and Traps by SCAQMD Method 25 (FID/TCA)

Report Date: May 3, 2005

Client: Horizon Air Measurement Services, Inc.

Client Project No.: W07-042

Source Location: Waste Management / Bradley Landfill, Sun Valley CA.

Source ID: Flare inlet

Date Received: April 25, & 27, 2005 Date Analyzed: April 25, & 28, 2005

|   |         |      |        |     | tank | tank   | tank            | tank       | tank  | trap<br>CO2 | tank   | l P. I |                |
|---|---------|------|--------|-----|------|--------|-----------------|------------|-------|-------------|--------|--------|----------------|
|   | AtmAA   | ;    | Sample |     | CO   | CH₄    | CO <sub>2</sub> | Ethane     | TGNMO | in ICV      | Oxygen | F1     | P <sub>2</sub> |
|   | Lab No. |      | ID     |     |      | (Coi   | ncentration     | s in ppmv) | )     |             | (%v)   | 1      |                |
| · |         | Tank | Trap   | ICV |      |        |                 |            |       |             |        |        |                |
| 0 | 1155-9  | K    | K      | 21  | 214  | 351000 | 299000          | 13.1       | 671   | 3120        | 3.81   |        | 820            |
| 0 | 1155-10 | J    | N      | 28  | 201  | 328000 | 279000          | 11.6       | 813   | 2820        | 4.58   | 377    | 820            |

trap burn system blank 17

18.0

TGNMO is total gaseous non-methane (excluding ethane) organics reported as ppm methane. Ethane is reported as ppmv methane.

P<sub>1</sub> - Initial Pressure, mm Hg

P<sub>2</sub> - Final Pressure, mm Hg

Michael L. Porter Laboratory Director

# QUALITY ASSURANCE SUMMARY (Repeat Analyses)

Client Project No.: W07-042

Date Received: April 25, & 27, 2005 Date Analyzed: April 25, & 28, 2005

| Components                                             | Sample<br>ID | Run #1       | Analysis<br>Run #2<br>entration in p | Mean<br>Conc.<br>opmv) | % Diff.<br>From Mean |  |
|--------------------------------------------------------|--------------|--------------|--------------------------------------|------------------------|----------------------|--|
| со                                                     | TK K<br>TK J | 214<br>201   | 213<br>201                           | 214<br>201             | 0.13<br>0.0          |  |
| CH₄                                                    | тк к         | 351000       | 351000                               | 351000                 | 0.0                  |  |
| CO <sub>2</sub>                                        | тк к         | 299000       | 297000                               | 298000                 | 0.34                 |  |
| Ethane                                                 | TK K<br>TK J | 12.9<br>11.6 | 13.4<br>11.6                         | 13.1<br>11.6           | 2.1<br>0.15          |  |
| TGNMO                                                  | TK K<br>TK J | 677<br>814   | 665<br>811                           | 671<br>813             | 0.88<br>0.23         |  |
| CO <sub>2</sub> in ICV<br>(in trap, transfer<br>tanks) | ICV 21       | 3100         | 3150                                 | 3120                   | 0.81                 |  |
|                                                        |              | (Cond        | centration in                        | %v)                    |                      |  |
| Oxygen                                                 | TK K         | 3.80         | 3.81                                 | 3.81                   | 0.08                 |  |

A set of 2 TCA samples, laboratory numbers 01155-(9-10), was analyzed for CO, CH $_4$ , CO $_2$ , and total gaseous non-methane organics (TGNMO). Agreement between repeat analyses is a measure of precision and is shown above in the column "% Difference from Mean". The average % Difference from Mean for 10 repeat measurements from the sample set of 2 TCA samples is 0.48%.

Gas standards (containing CO, CH  $_4$ , CO  $_2$  and isobutane) used for TCA analyses, were prepared and certified by Praxair.





Atm AA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

### LABORATORY ANALYSIS REPORT

environmental consultants laboratory services

SCAQMD Rule 1150.1 Components Analysis in Inlet Gas Tedlar Bag Sample

Report Date: May 2, 2005

Client: Horizon / WMNA

Project Location: Bradley LF #3 Flare

Client Project No.: W07-042
Date Received: April 21, 2005
Date Analyzed: April 21 & 22, 2005

Date Analyzed. April 21 & 2

AtmAA Lab No.:

01115-29 W07042

Sample I.D.:

F3-M307.91-I

Components (Concentration in ppmv)
Hydrogen sulfide 23.3

(Concentration in ppbv)

|                       | (Concentiation in ppov) |
|-----------------------|-------------------------|
| Benzene               | 7240                    |
| Benzylchloride        | <40                     |
| Chlorobenzene         | 321                     |
| Dichlorobenzenes*     | 1380                    |
| 1,1-dichloroethane    | 140                     |
| 1,2-dichloroethane    | 50.4                    |
| 1,1-dichloroethylene  | 44.6                    |
| Dichloromethane       | 250                     |
| 1,2-dibromoethane     | <30                     |
| Perchloroethylene     | 1120                    |
| Carbon tetrachloride  | <30                     |
| Toluene               | 22000                   |
| 1,1,1-trichloroethane | <20                     |
| Trichloroethene       | 418                     |
| Chloroform            | <30                     |
| Vinyl chloride        | 382                     |
| m+p-xylenes           | 12400                   |
| o-xylene              | 4500                    |
|                       |                         |

<sup>\*</sup> total amount containing meta, para, and ortho isomers

Michael L. Porter Laboratory Director



Ation A A inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

#### LABORATORY ANALYSIS REPORT

Hydrogen Sulfide and Reduced Sulfur Compounds Analysis in Inlet Tedlar Bag Sample

Report Date: May 2, 2005

Client: Horizon / WMNA

Project Location: Bradley LF #3 Flare

Client Project No.: W07-042 Date Received: April 21, 2005 Date Analyzed: April 21, 2005

### **ANALYSIS DESCRIPTION**

Hydrogen sulfide was analyzed by gas chromatography with a Hall electrolytic conductivity detector operated in the oxidative sulfur mode. All other components were measured by GC/ Mass Spec.

|                     | AtmAA Lab No.: | 01115-29                |
|---------------------|----------------|-------------------------|
|                     | Sample I.D.:   | W07042                  |
|                     |                | F3-M307.91-I            |
| Components          | <del></del>    | (Concentration in ppmv) |
|                     |                |                         |
| Hydrogen sulfide    |                | 23.3                    |
| Carbonyl sulfide    |                | 0.17                    |
| Methyl mercaptan    |                | 3.51                    |
| Ethyl mercaptan     |                | <0.1                    |
| Dimethyl sulfide    |                | 6.66                    |
| Carbon disulfide    |                | 0.091                   |
| isopropyl mercaptan |                | 0.16                    |
| n-propyl mercaptan  |                | <0.06                   |
| Dimethyl disulfide  |                | 0.50                    |

TRS - total reduced sulfur

TRS

Michael L. Porter Laboratory Director

35.0

# QUALITY ASSURANCE SUMMARY (Repeat Analyses)

Client Project No.: W07-042
Date Received: April 21, 2005
Date Analyzed: April 21 & 22, 2005

|                       | Sample       |        | Analysis        | Mean        | % Diff.   |
|-----------------------|--------------|--------|-----------------|-------------|-----------|
|                       | ID           | Run #1 | Run #2          | Conc.       | From Mean |
| Components            |              | (Con   | centration in p | opbv)       |           |
| Benzene               | F3-M307.91-I | 7300   | 7180            | 7240        | 0.83      |
| Benzylchloride        | F3-M307.91-I | <40    | <40             | <del></del> |           |
| Chlorobenzene         | F3-M307.91-I | 323    | 319             | 321         | 0.62      |
| Dichlorobenzenes      | F3-M307.91-I | 1390   | 1370            | 1380        | 0.72      |
| 1,1-dichloroethane    | F3-M307.91-l | 140    | 141             | 140         | 0.36      |
| 1,2-dichloroethane    | F3-M307.91-I | 50.2   | 50.7            | 50.4        | 0.50      |
| 1,1-dichloroethylene  | F3-M307.91-I | 45.0   | 44.3            | 44.6        | 0.78      |
| Dichloromethane       | F3-M307.91-I | 250    | 251             | 250         | 0.20      |
| 1,2-dibromoethane     | F3-M307.91-I | <30    | <30             | 406         |           |
| Perchloroethylene     | F3-M307.91-I | 1120   | 1120            | 1120        | 0.0       |
| Carbon tetrachloride  | F3-M307.91-I | <30    | <30             |             |           |
| Toluene               | F3-M307.91-I | 22100  | 22000           | 22000       | 0.23      |
| 1,1,1-trichloroethane | F3-M307.91-l | <20    | <20             |             |           |
| Trichloroethene       | F3-M307.91-I | 416    | 420             | 418         | 0.48      |
| Chloroform            | F3-M307.91-I | <30    | <30             |             |           |
| Vinyl chloride        | F3-M307.91-I | 380    | 383             | 382         | 0.39      |
| m+p-xylenes           | F3-M307.91-I | 12400  | 12300           | 12400       | 0.40      |
| o-xylene              | F3-M307.91-I | 4520   | 4480            | 4500        | 0.44      |

### QUALITY ASSURANCE SUMMARY (Repeat Analyses) (continued)

|                      | Sample       |                 | Analysis<br>Run #2 | Mean<br>Conc. | % Diff.<br>From Mean |
|----------------------|--------------|-----------------|--------------------|---------------|----------------------|
| Sulfur Components    | ID           | Run #1<br>(Conc | entration in p     |               | 1 TOTT Wear          |
| Hydrogen sulfide     | F3-M307.91-I | 23.7            | 22.9               | 23.3          | 1.7                  |
| Carbonyl sulfide     | F3-M307.91-l | 0.16            | 0.18               | 0.17          | 5.9                  |
| Methyl mercaptan     | F3-M307.91-I | 3.38            | 3.64               | 3.51          | 3.7                  |
| Ethyl mercaptan      | F3-M307.91-I | <0.1            | <0.1               |               |                      |
| Dimethyl sulfide     | F3-M307.91-I | 6.53            | 6.80               | 6.66          | 2.0                  |
| Carbon disulfide     | F3-M307.91-I | 0.087           | 0.095              | 0.091         | 4.4                  |
| iso-propyl mercaptan | F3-M307.91-l | 0.16            | 0.17               | 0.16          | 3.0                  |
| n-propyl mercaptan   | F3-M307.91-I | <0.06           | <0.06              |               | ga an ma             |
| Dimethyl disulfide   | F3-M307.91-I | 0.52            | 0.48               | 0.50          | 4.0                  |

One Tedlar bag sample, laboratory number 01115-29, was analyzed for SCAQMD Rule 1150.1 components, hydrogen sulfide, and total reduced sulfur compounds. Agreement between repeat analyses is a measure of precision and is shown above in the column "% Difference from Mean". Repeat analyses are an important part of AtmAA's quality assurance program. The average % Difference from Mean for 20 repeat measurements from the one Tedlar bag sample is 1.5%.



A 12 15 (1) A A Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

### LABORATORY ANALYSIS REPORT

environmental consultants laboratory services

SCAQMD Rule 1150.1 Components Analysis in Outlet Tedlar Bag Sample

Report Date: May 2, 2005

Client: Horizon / WMNA

Project Location: Bradley LF #3 Flare

Client Project No.: W07-042
Date Received: April 21, 2005
Date Analyzed: April 21, 2005

AtmAA Lab No.:

01115-30

Sample I.D.:

W07042

F3-VOC-O

Components (Concentration in ppbv)

| Hydrogon culfide            | <500  |
|-----------------------------|-------|
| Hydrogen sulfide<br>Benzene | 2.26  |
| <del> </del>                | <0.8  |
| Benzylchloride              | <0.3  |
| Chlorobenzene               | <1.1  |
| Dichlorobenzenes*           | <0.3  |
| 1,1-dichloroethane          |       |
| 1,2-dichloroethane          | <0.3  |
| 1,1-dichloroethylene        | <0.3  |
| Dichloromethane             | 1.28  |
| 1,2-dibromoethane           | <0.3  |
| Perchloroethylene           | <0.2  |
| Carbon tetrachloride        | <0.2  |
| Toluene                     | 0.37  |
| 1,1,1-trichloroethane       | <0.2  |
| Trichloroethene             | <0.2  |
| Chloroform                  | <0.2  |
| Vinyl chloride              | < 0.3 |
| m+p-xylenes                 | 0.36  |
| • • •                       | <0.3  |
| o-xylene                    |       |

<sup>\*</sup> total amount containing meta, para, and ortho isomers

Michael L. Porter Laboratory Director

07.0

### CHAIN OF CUSTODY RECORD

| Client/Project Name                                     | Project Loca     | tion          |                        |             |                       | Z            |             |            |       | <del></del> | <del></del>                                      | /             |
|---------------------------------------------------------|------------------|---------------|------------------------|-------------|-----------------------|--------------|-------------|------------|-------|-------------|--------------------------------------------------|---------------|
| WASTE MIONE Bruchen L                                   | - 4.             | Jallay        | C VA                   |             |                       | X            | 7)          | Δ1         | VALYS | ES          |                                                  |               |
| Project No.                                             | Field Logbook I  | No.           | ) (1                   |             |                       | <u>//</u> U  | 7           | 7          | 7     | 7           | <del>,                                    </del> |               |
| wox-0+2                                                 |                  |               |                        |             | F.                    | · /          |             |            |       |             |                                                  |               |
| Sampler (Signature)                                     | Chain of Custody | Tape No.      |                        |             | 73                    |              |             |            |       |             |                                                  |               |
|                                                         |                  |               |                        |             | 10                    | / ,          | / ,         | / /        | / ,   | / /         | /                                                |               |
|                                                         |                  |               |                        | 14          | 7                     |              | <u>~</u> /. |            |       |             |                                                  |               |
|                                                         | Sample<br>umber  | Type<br>Sam   |                        | 13          | $\mathcal{O}^{ullet}$ | 1/ EC        |             | $\gamma$   |       |             | REMAF                                            | ארכ           |
|                                                         |                  |               |                        | <del></del> | /                     |              |             | /          | /     |             | NEIVIA                                           | 11/2          |
| TANK K 9/25/06 0113                                     | 5-9              |               |                        | 7           | Z.                    | K            | 2-          | <b>,</b>   |       | ļ           |                                                  |               |
|                                                         | <u> </u>         | <u> </u>      |                        | 7           | <u> </u>              | 7            | 25          |            |       |             |                                                  |               |
|                                                         |                  |               |                        | <u> </u>    |                       |              |             |            |       |             | <del></del>                                      |               |
|                                                         |                  |               |                        |             |                       |              | <b></b>     |            |       | ļ           |                                                  |               |
|                                                         |                  |               | ·                      |             |                       |              |             |            |       |             |                                                  |               |
|                                                         |                  |               |                        |             |                       |              |             |            |       |             |                                                  |               |
|                                                         |                  |               |                        |             |                       |              |             |            |       |             |                                                  | ·             |
| Refine (Vished by: (Signature)                          |                  | Date          | Time                   | Possi       | ved By:               | (Cian        | ot (So)     |            |       | <u> </u>    | ID-4-                                            | [ <del></del> |
| neimodistied by: (Signature)                            |                  |               | 1                      | Necei       | V O O V               | (Sigili<br>L | atore)      | <b>-</b> - |       |             | Date                                             | Time          |
| Relinguished by: (Signature)                            |                  | Date /        | /0/0<br>Time           |             | rif                   | 10:-         |             | ·          |       | -4          | 25/05                                            | 1010          |
| 13/                                                     | 21               |               | 1100                   | 1///        | ved by                | (Signi       | ature)      | 21         |       |             | Date                                             | Time          |
| Rejinquished by: (Signature)                            |                  | 95/05<br>Bate | Time                   |             | whe                   | re s         | 1           | art        | X     | <b>.</b>    | 4125/04                                          | *             |
| Tresinguisted by Giginature)                            | 7                | Date          | Time                   | Recei       | ved for               | Labor        | atory: /    | 'Signat    | ure)  |             | Date                                             | Time          |
| Sample Disposal Method:                                 |                  | Dianagad      | - f h (C'              | <u> </u>    |                       |              |             |            |       |             |                                                  |               |
| овтро в прозаг тетой,                                   |                  | Dishosed (    | of by: ( <i>Sign</i> a | acure)      |                       |              |             |            |       |             | Date                                             | Time          |
| SAMPLE COLLECTOR                                        |                  | AMALVIIC      | AL 1 ADOD 4            | TODY        |                       |              |             |            |       |             |                                                  | L             |
|                                                         |                  | ANALYTICA     | AL LABURA              | HURY        |                       |              |             |            |       |             |                                                  |               |
| HORIZON AIR MEASUREMENT SER                             | VICES, INC       |               |                        |             |                       |              |             |            |       |             |                                                  |               |
| 996 Lawrence Drive, Suite 108<br>Newbury Park, CA 91320 |                  |               |                        |             |                       |              |             |            |       |             |                                                  |               |
| (805) 498-8781 Fax (805) 498-3173                       |                  |               |                        |             |                       |              |             |            |       |             | Nº 82                                            | )12           |
|                                                         |                  |               |                        |             |                       |              |             |            |       |             | . 02                                             | .13           |

| Client/Project Name P                                                | CHAIN OF CUSTODY    | THE COST OF THE CO |                    |
|----------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| VASTE MANAGEMENT                                                     | oject Location      | ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
| Project No. Field 1/07 - 042                                         | Logbook No.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Sampler: (Signature) Chain                                           | of Custody Tape No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Sample No./ Lab Sample Identification Date Time Number               | Type of<br>Sample   | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| 17 04.27.05                                                          | SCAQMO 25           | 3 V - System Bla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ank                |
| 25                                                                   |                     | VRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 4                                                                    |                     | V $G$ $U$ $T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| 21<br>28 \ \                                                         |                     | V K K J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>_</del>       |
| Relinquished by: (Signature)                                         | Date Time           | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne                 |
| Relinquished by: (Signature)                                         | Date Time           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>า <del>e</del> |
| Relinquished by: (Signature)                                         | Date Time           | and the second of the second o |                    |
| Sample Disposal Method:                                              | Disposed of by: (   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ク <i>(サン</i><br>ne |
| SAMPLE COLLECTOR                                                     | ANALYTICAL LAE      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| HORIZON AIR MEASUREMENT SERVICES, I<br>996 Lawrence Drive, Suite 108 | ATM.,               | A.A. Basas CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| Newbury Park, CA 91320<br>(805) 498-8781 Fax (805) 498-3173          | (nlas               | 62525 (A<br>Nº 8708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                  |

# **APPENDIX D - Field Data Sheets**

| Facility:<br>Source:<br>Job #: | Bradley LF<br>Flare 1#3 In<br>WOT- 7042 | Baro. Press: Static Press: Pitot Tube #: | 29.0%<br>7101WV | D <sub>1</sub> upstream:<br>D <sub>1</sub> downstream:<br>Stack Diameter: | 21.8<br>10     |  |
|--------------------------------|-----------------------------------------|------------------------------------------|-----------------|---------------------------------------------------------------------------|----------------|--|
| Date:<br>Operato               | 4/21/05<br>1: Re                        | Pitot Tube Type:<br>Magnahelic:          | \$10<br># \$    | Leak C<br>Initial:                                                        | heck<br>Final: |  |
| Run #:                         | 1                                       |                                          | 47.5%           |                                                                           |                |  |

| Point<br># | Position in.                          | Velocity Head<br>in. H₂O | Stack Temp<br>°F     | Cyclonic Flow<br>Angle | Side View     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|---------------------------------------|--------------------------|----------------------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A-8        |                                       | 0.40                     | 118                  |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ţ          | · · · · · · · · · · · · · · · · · · · | 0.70                     | 118                  |                        |               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6          |                                       | 0.70                     | 118                  |                        | 4 HOW         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5          |                                       | 0.70                     | 118                  |                        |               | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4_         |                                       | 0.70                     | 118                  | ļ                      |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                       | 0.70                     | 118                  |                        |               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u> </u>   |                                       | 0.70                     | //B                  |                        | - 21 - 40 - P | lane or community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                       |                          |                      |                        |               | Statement of the state of the s |
|            |                                       |                          |                      |                        | Top View      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                       |                          |                      |                        |               | ].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                       |                          |                      |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                       |                          |                      |                        |               | i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                       |                          |                      |                        |               | (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                       |                          |                      |                        |               | #School control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                       |                          |                      | ·                      |               | Education 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Average    |                                       | VAP=0.8367               | T <sub>s</sub> = 118 | <b>_</b> =             |               | Mission manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Horizon Air Measurement Services, Inc.
Velocity Data Sheets - Method 2 (H:WPDOCS\FORMS\VELOCITY DATA SHEET - M2)

| acility:<br>ource:<br>ob #:<br>ate:<br>operator:<br>Run #: | Bradly<br>Flare #<br>WO 4-04<br>1/21/04 | Station Pitot                         | Press: _<br>: Press: _<br>Tube #: _<br>Tube Type: _<br>nahelic: _ | 29.04<br>>10<br>500<br>500<br>#3<br>5492 | D <sub>1</sub> downstream: Stack Diameter: Leak C Initial: | H.E.   |
|------------------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|--------|
| Point<br>#                                                 | Position in.                            | Velocity Head<br>in. H <sub>2</sub> O | Stack Temp<br>°F                                                  | Cyclonic Flow<br>Angle                   | Side                                                       | View   |
| 4-8                                                        |                                         | 0.80                                  | 129                                                               |                                          |                                                            |        |
| 7                                                          |                                         | 0.80                                  | 129                                                               |                                          |                                                            |        |
| 6                                                          |                                         | 0.80                                  | 129                                                               |                                          |                                                            |        |
| 5                                                          |                                         | 0.80                                  | 130                                                               |                                          |                                                            |        |
| 4                                                          |                                         | 0.80                                  | 130.                                                              |                                          |                                                            |        |
| <u> </u>                                                   |                                         | 080                                   | 129                                                               |                                          |                                                            |        |
| ٢                                                          | \                                       | 0.80                                  | 130.                                                              |                                          |                                                            |        |
| 1                                                          |                                         | 0.80                                  | 129,                                                              |                                          |                                                            |        |
|                                                            |                                         |                                       | <del></del>                                                       |                                          |                                                            |        |
|                                                            |                                         |                                       |                                                                   |                                          |                                                            |        |
|                                                            | <u> </u>                                |                                       |                                                                   |                                          | Top                                                        | p View |
|                                                            |                                         |                                       |                                                                   |                                          |                                                            |        |
|                                                            |                                         |                                       | _                                                                 |                                          |                                                            |        |
|                                                            |                                         |                                       |                                                                   |                                          | 1                                                          |        |
|                                                            | <del> </del>                            |                                       |                                                                   |                                          | 1                                                          |        |
| . <u> </u>                                                 |                                         |                                       |                                                                   |                                          | 1                                                          |        |
|                                                            |                                         |                                       |                                                                   |                                          | 1                                                          |        |
|                                                            |                                         | _                                     | _                                                                 |                                          | 1                                                          |        |
|                                                            | 1                                       |                                       | 1                                                                 |                                          | ]                                                          |        |
|                                                            |                                         |                                       | - <del> </del>                                                    |                                          | 1                                                          |        |
|                                                            |                                         |                                       |                                                                   |                                          | 1                                                          |        |
|                                                            |                                         |                                       |                                                                   |                                          | 1                                                          |        |

Horizon Air Measurement Services, Inc.
Velocity Data Sheets - Method 2 (H:WPDOCS\FORMS\VELOCITY DATA SHEET - M2)

Average

#### PARTICULATE FIELD DATA METER BOX NO. ASSUMED MOISTURE, % METER ΔH @\_ 1.6449 AMBIENT TEMPERATURE -LOCATION Y= 1.0110 BARO. PRESS. 2709 OPERATOR NO PROBE I.D. NO. STATIC PRESS. SOURCE LIF Flowic NA NOZZLE DIAMETER, in. NOMAGRAPH INDEX VNO. 1-42AQUAD STACK DIAMETER, in. NNZ MPLE BOX NO. PROBE HEATER SETTING NA PRE TEST LEAK CHECKS HEATER BOX SETTING NA METER 20.001@ 10 in. Hg 0910 TIME START\_\_ Δ Cp FACTOR\_ PITOTS \_@\_ in. Hg FILTER NO. **UV** ORSAT P# TIME T<sub>s</sub> ΔΡ **√** ∆ P $\Delta H$ $T_{m\,IN}$ °F T<sub>m</sub> OUT ٧m OVEN IMP. VAC. in H<sub>-</sub>O in H<sub>2</sub>O 86.422 P. °F OUT °F (in Hg 5 00 44 171/2 ML 9-14.365 1.6 ध्य 44 74-1 10 1.6 85 60 20 95 831,7 87 1.6 50 \_ द्रु 1.6 90 56 40 8476 1.6 90 55 4 W 1.6 90 54 2 60 80,50 100 TIME END = 20.001 POST TEST LEAK CHECKS Meter\_ 4.000 in. Hg (Q) Pitots @ in. Hg Orsat

| Volume of Liquid     | <u> </u> | Imping | Silica Gel<br>Wght |   |     |
|----------------------|----------|--------|--------------------|---|-----|
| Water Collected      |          | 2      | 3                  | 4 | 5   |
| Final                | 150      | 90     | 1                  |   | 242 |
| Initial              | 100      | 601    | 0                  |   | 260 |
| Liquid Collected     | 50       | -10    | -                  |   | 17  |
| Total Vol. Collected |          |        |                    |   | 58  |

CO,

0,

CO

N.

Time

Orsat Meas.

HORIZON AIR MEAŞUREMENT SERVICES, INC.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                   |                          |                           |                                     | PARTICUL                                                 | ATE FIELD DA                               | <u>TA</u>            | 51,************************************ |                                          | ###################################### | 68-1-48-1-48-1-48-1-48-1-48-1-48-1-48-1- |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------------------|----------------------------------------------------------|--------------------------------------------|----------------------|-----------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|
| Street or the street of the st | LOCATIO                | Bradle<br>4/21/04<br>N Su<br>N Su<br>N Su<br>N Su<br>N Su<br>N Su<br>N Su<br>N Su | Valley.                  | CA CX                     | ME<br>Y=<br>PRO<br>NO<br>ST.<br>PRO | OBE I.D. NO.  ZZLE DIAMETER  ACK DIAMETER  OBE HEATER SE | , in. TING NA                              |                      |                                         | AMBIEN<br>BARO, PI<br>STATIC I<br>NOMAGI | PRESS.<br>RAPH IND                     | EX                                       | NA<br>PLOT<br>NA<br>HECKS                |
| Control of the Contro | TIME STA               | RT                                                                                | ۷                        | ·                         | ΔΟ                                  | ATER BOX SETT<br>P FACTOR<br>TER NO                      | ING NA                                     |                      |                                         | METER_PITOTS_<br>ORSAT_                  | 0.001                                  | @ 10                                     | in. Hg<br>in. Hg                         |
| Processor and Pr | P#                     | TIME                                                                              | T <sub>s</sub>           | ΔP<br>in H <sub>2</sub> O | √∆P                                 | ΔH<br>in H₂O                                             | Vm<br>ft³                                  | T <sub>m IN</sub> °F |                                         | OUT<br>F                                 | OVEN<br>°F                             | IMP.<br>OUT °F                           | VAC<br>(in Hg                            |
| FOR CHARACTER STATE OF THE PROPERTY OF THE PRO | 5                      | 30<br>30<br>40                                                                    | NA                       | - AA                      | NA                                  | 1.6<br>1.6<br>1.6<br>1.6                                 | 863.714<br>841.4<br>849.1<br>8867<br>894.4 | 92<br>93<br>96<br>97 | 91                                      | 2                                        | NA                                     | 84                                       | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < |
| Name of the Party  | 4                      | 50<br>60                                                                          |                          |                           |                                     | 1.6                                                      | 902.0                                      | ଦ୍ର                  | 193                                     | 2                                        |                                        |                                          | </td                                     |
| Marchanista Marchanista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                                                                   |                          |                           |                                     |                                                          |                                            |                      |                                         |                                          |                                        |                                          |                                          |
| married bosons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                   |                          |                           |                                     |                                                          |                                            |                      |                                         |                                          |                                        |                                          |                                          |
| TOTAL TREATMENT AND THE PARTY COMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                   |                          |                           |                                     |                                                          |                                            |                      |                                         |                                          |                                        |                                          |                                          |
| Annual Manual Manual Common of the Common of | Avg. TIME END =        | - 14                                                                              | u                        |                           |                                     | 16                                                       | 15.987                                     |                      | 930                                     | )                                        |                                        |                                          |                                          |
| interest contract designation of the contract  | Volume<br>Water        | e of Liquid<br>Collected                                                          | 1                        | Impinger Volum            | 4                                   | Silica Gel<br>Wght.                                      | Meter <pre> Pitots Orsat</pre>             | .o.oo                |                                         | 3(C                                      | CHECKS                                 | in. Hg<br>n. Hg                          |                                          |
| - Interestations and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In                     | inal<br>itial                                                                     | 100                      | 8 0                       |                                     | 274<br>756                                               | Orsat Me                                   | 1                    | Time                                    | CO <sub>2</sub>                          | O <sub>2</sub>                         | со                                       | N <sub>2</sub>                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Liquid<br>Total Vol. C | Collected<br>Collected                                                            | 20                       | W 8                       |                                     | 18                                                       |                                            | 3                    |                                         |                                          |                                        |                                          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HORIZON AIR            | MEASUREMEN                                                                        | NT SERVI <b>C</b> ĘS, IN | c                         |                                     |                                                          | Nozzie Cal                                 |                      | _D, _                                   | D,                                       | D <sub>t</sub>                         | Ave                                      | rage                                     |

| Facility: | Brailey  | LF       |
|-----------|----------|----------|
| Source:   | Flore =  | 3        |
| Job #:    | WO 7-04. | <u> </u> |
| Doto      | 4/2ilos  |          |

Baro. Press: Static Press: Pitot Tube #: 29.012 -0.00 =

D<sub>1</sub> upstream:
D<sub>1</sub> downstream:
Stack Diameter:

Final/

Pitot Tube Type: "45"
Magnahelic: Manan

Leak Check

Run#: Prela

Operator: \_

Initial:

|           | Side View | <b>10</b>                          |
|-----------|-----------|------------------------------------|
| A<br>Fran | 40 15     | best many) Environment best motion |
|           |           | Reservement 333                    |
|           |           |                                    |

|   | 1 |          | V |
|---|---|----------|---|
|   |   | Top Viev | , |
|   |   |          |   |
|   |   |          |   |
|   |   |          |   |
|   |   |          |   |
|   |   |          |   |
|   |   |          |   |
|   | į |          |   |
|   |   |          |   |
|   |   |          |   |
|   |   |          |   |
| J |   |          |   |

| Point<br># | Position<br>in. | Velocity Head<br>in. H₂O | Stack Temp       | Cyclonic Flow<br>Angle |
|------------|-----------------|--------------------------|------------------|------------------------|
| A-12       |                 | 40.010                   | 1680             |                        |
| []         |                 | <0.01                    | 1611             |                        |
| 10         |                 | <0:01                    | 1668             |                        |
| 9          |                 | <0.01                    | 1700             |                        |
| 8          |                 | <0.01                    | 1688             |                        |
|            |                 | <0.01                    | 1644             |                        |
| 6          |                 | <0.01                    | 1686             |                        |
| 5          |                 | <0.01                    | 1648             |                        |
| 4          |                 | <0.01                    | 1632             |                        |
|            |                 | (0.0)                    | 1644             |                        |
| 7          | ,               | 20.01                    | 661              |                        |
|            |                 | < 6.01                   | 1594             |                        |
| 13-12      |                 | 40.01                    | 1642             |                        |
| (/         |                 | 40.01                    | 1630,            |                        |
| 10         |                 | <0.01                    | 168ch            |                        |
| 9          |                 | <0.01                    | 1701,            |                        |
| 8          |                 | <0.01                    | 168d             |                        |
| I          |                 | <0.01                    | 1671             |                        |
| 6          |                 | <0.01                    | 1666             |                        |
| 45         |                 | (0.01                    | 1654             |                        |
| 4          |                 | <0.01                    | 1643,            |                        |
| <u> </u>   |                 | <0.01                    | 1624             |                        |
| ٤          |                 | <0.01                    | 1611             | ·                      |
|            |                 | <0.01                    | 1620             |                        |
| Average    |                 | √ <b>∆</b> P=            | T <sub>s</sub> = | <u>_</u> =             |

Horizon Air Measurement Services, Inc.
Velocity Data Sheets - Method 2 (H:WPDOCS\FORMS\VELOCITY DATA SHEET - M2)

### PARTICULATE FIELD DATA

| PLANT Brackley LF         |
|---------------------------|
| DATE 4/21/05              |
| LOCATION SUR , CITE , CIT |
| OPERATOR VK, TW           |
| SOURCEUFO Flore # ?       |
| NNO. 1 - Schomb methis    |
| MPLE BOX NO. //- >        |
|                           |
| TIME START                |

| METER BOX NO         | ` <del>f-</del> |
|----------------------|-----------------|
|                      | 1.5261          |
| Y=/                  | .0015           |
| PROBE I.D. NO. 10'   | 1200 - (        |
| NOZZLE DIAMETER, in. | 1.02 (00)       |
| STACK DIAMETER, in.  | 16"             |
| PROBE HEATER SETTING | NA              |
| HEATER BOX SETTING   | NA              |
| Δ Cp FACTOR          | 0.84            |
| FILTER NO 6'4        | 500'7           |

ASSUMED MOISTURE, % 10

AMBIENT TEMPERATURE ~ 70 V

BARO, PRESS. 27.0 7

STATIC PRESS. - 0.00 C

NOMAGRAPH NDEX 210 220

PRE TEST LEAK CHECKS

METER COOO @ 13 in. Hg

PITOTS / @ > 3/25 in. Hg

ORSAT

|                                       | P#     | TIME        | T <sub>s</sub><br>"F | ΔP<br>in H <sub>2</sub> O | √ <b>Δ P</b> | ΔH<br>in H₂O | Vm<br>ft³ | T <sub>m IN</sub> °F | T <sub>m</sub> OUT<br>°F | OVEN<br>°F       | IMP.<br>OUT 'F | VAC.<br>(in Hg)  |
|---------------------------------------|--------|-------------|----------------------|---------------------------|--------------|--------------|-----------|----------------------|--------------------------|------------------|----------------|------------------|
|                                       | A-12   |             | 1664                 | 0.01                      |              | 2.2          | 978.482   |                      | 88                       | MA               | 75             | 7                |
| Water Company                         | 1      | 2. 4        | 1-51                 | 0.01                      |              | 2. 7         | 980.9     | 86                   | 88                       |                  | 61             | 7                |
| 55052                                 | 10     | 5.0         | <u> </u>             | 0.01                      | ,            | 22           | 963.1     | 67                   | 88                       |                  | 58             | 7                |
|                                       | 4      | 4.5         | 1                    | 0.01                      |              | 277          | 985 3     | 90                   | 68                       |                  | 57             | 7                |
|                                       | 8      |             | 1662                 | 10.0                      |              | <b>ス.ス</b>   | 98F.Y     | 90                   | 80                       |                  | 56             | 7                |
|                                       | 7      | 12.5        | 1631                 | 0.01                      |              | 2,2          | 989.6     | 92                   | 88                       |                  | 57             | 7-7-7-7          |
|                                       | 6      | 15.0        | 1639                 | 0.01                      |              | 2.2_         | 991.8     | 94                   | 88                       | <del>- · ·</del> | 57             | 7                |
|                                       | 5      | 17.5        | 1606                 | 0.01                      | ·            | 2.2          | 994.0     | 95                   | 68                       |                  | 58             | I                |
| ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 4      | λο.0        | 1627                 | 0.01                      |              | 2 入          | 996.2     | 95                   | 88                       |                  | 58             | I<br>Z           |
| georg                                 | 3      | <b>ルス</b> を | 1656                 | 0.01                      |              | 2.7          | 998.4     | 96                   | 89                       |                  | 58             | 7                |
|                                       | ٤      | کے۔ن        | 1661                 | 0.01                      |              | ュス           | 000.7     | 97                   | 84                       |                  | 57             | 7                |
| W                                     | /_ '   | 27          | 1655                 | 0.01                      |              | ر<br>بر      | 00Z.9     | 98                   | 891                      |                  | <u>58</u>      | 4                |
| <b>У</b> ∦                            | B-12   | 30.℃        | 1647                 | 0.01                      |              | <b>ス.</b> み  | 006.30    | <sup>C</sup> 10      | 911                      |                  | 59             | 7                |
| ŲΙ                                    | ,      | 32.8        | 1641                 | 0.01                      |              | 7.7          | 007.0     | 95                   | 90                       |                  | 57             |                  |
| (                                     | 16     | 3€.0        | 1639                 | 0.01                      |              | ス・ユ          | 009.2     | 98                   | 91                       |                  | 56             | 477              |
| Ì                                     | 9      | 34 <i>5</i> | 1631                 | 0.01                      |              | ン.ス          | 611.5     | 98                   | 92                       |                  | 56             | '\(\mathcal{T}\) |
|                                       | 8      | 40.0        | 1646                 | 0.01                      |              | アア           | 013.8     | 100                  | 93                       |                  | 57             | 7                |
|                                       | ¥      | 42.8        | 1633                 | 0.01                      |              | ス・ン          | 0,60      | 100                  | 93                       |                  | 万千             | - <del>Y</del>   |
|                                       | 6      | 45.0        | 1643                 | 0.01                      |              | <b>シ</b> ス   | 018.2     | 100                  | 94                       |                  | 56             | 7                |
|                                       | 5      | 475         | 1642                 | 0.01                      | <u> </u>     | ス・み          | 020.4     | 100                  | 94                       |                  | 55             | 7                |
| ,                                     | 4      | 60.0        | 1640                 | 0.01                      |              | 2.2          | 022.6     | 100                  | 95                       |                  | 56             | 7                |
|                                       | 3      | 526         | 1646                 | 0.01                      |              | スス           | P.1460    | 100                  | 94                       |                  | 55             | 7                |
|                                       | 7      | 450         | 1641                 | 0.01                      |              | 2.2          | 027.0     | 101                  | 94                       |                  | 56             | ¥                |
| Ì                                     | ì      |             | 1629                 | 0.01                      |              | ス・ユ          | 029.3     | 101                  | 96                       |                  | 56             | 77               |
| Ļ                                     |        | 60.0        |                      |                           |              |              | 031-514   |                      |                          |                  |                |                  |
|                                       | Avg.   | Sec.        | 1648.1               |                           | 01000        | 22           | 53.032    |                      | 93.1                     |                  |                |                  |
| TI                                    | ME END | =           | jort                 |                           |              |              |           |                      |                          | <u> </u>         |                |                  |

| Volume of Liquid     |     | Imping | Silica Gel<br>Wght. |   |     |
|----------------------|-----|--------|---------------------|---|-----|
| Water Collected      | 1   | 2      | 3                   | 4 | 5   |
| Final                | 216 | 121    | S                   |   | 274 |
| Initial              | 100 | 100    | 0                   |   | 261 |
| Liquid Collected     | 116 | 21     | 5                   |   | 13  |
| Total Vol. Collected |     |        |                     |   | 155 |

Meter POST TEST LEAK CHECKS
in. Hg
Pitots @ D in. Hg
Orsat

| Orsat Meas. | Time | CO <sub>2</sub> | O <sub>2</sub> | со  | N <sub>2</sub> |
|-------------|------|-----------------|----------------|-----|----------------|
| 1           |      |                 |                |     |                |
| 2           |      |                 |                |     |                |
| 3           |      |                 |                |     |                |
| Nozzle Cal  | D,   | D,              | $D_{3}$        | Ave | rage           |
|             |      |                 |                |     |                |

HORIZON AIR MEASUREMENT SERVICES, INC.

U59

PARTICULATE FIELD DATA PLANT Bracks T METER BOX NO. ASSUMED MOISTURE, % 1.5261 DATE 4/2/10 5 LOCATION SLA VIII 4, CA METER AH @ AMBIENT TEMPERATURE 79.C 1.0015 Y= BARO, PRESS, OPERATOR PC TUI PROBE I.D. NO. Inco. 101 STATIC PRESS. - b. 00 · NOZZLE DIAMETER, in. 1.0 2 NOMAGRAPH INDEX 220 1NO. 2-5 20MD meen STACK DIAMETER, in. PROBE HEATER SETTING WV MPLE BOX NO. PRE TEST LEAK CHECKS MA METER 4 P. DOI @ PITOTS 2 2 2 2 HEATER BOX SETTING TIME START /// Z-Δ Cp FACTOR 0. EU @ > 3 FILTER NO. ORSAT T<sub>m</sub> OUT TIME T, F √∆P ΔΗ P# ΔΡ ٧m OVEN IMP. VAC. (in Hg) in H<sub>2</sub>O in H<sub>2</sub>O  $\Omega^3$ °F OUT 'F 00 0.01 1546 スス 034.563 96 NA 90 4-12 90 96 2.5 96 11 1590 0.01 ブ 036.9 64 50 039.2 98 0.01 96 10 1656 ス・ム 60 6 96 9 7.5 1632 0.01 ス.ス DUL. 5 58 6 101 94 10.0 1496 0.01 043.8 103 7 046.1 12.8 97 56 ス.ス 103 0.01 1115 6 160 048.4 97 55 6 6633 104 0.01 17.6 0.60.6 98 5 0.01 56 1620 104 4 052. 104 1630 0.01 ٠, ك 55 20.0 72.41610 6.01 マース 055-104 56 100 7,2 ロジチ・シ 260 1612 98 0.01 105 57 6 27.4 0.01 え・ユ 659.4 90 1611 56 105 -1Z 30U 0.01 え. ಒ 062.05L 99 90 57 13 交 1626 0.01 064.3 100 1) 100 56 6 10 99 3*5.0* 066.5 101 0.01 6 57-1648 WB. + 104 99 4 0.01 56 حک 2. 入. 99 0.01 104 56 1698 041.0 6 Ø 400 0,01 ス ユ 99 57 42.4 1608 043.3 105 I 045.6 99 56 45.0 (65) 6.01 ス・フ 106 99 4251642 57 0.01 2.7 ወ¥<del></del>ችይ 107 6 4 0.01 **ブ**8 500 る,え 080.7 107 99 N 1600 525 ス、ス 1597 0.01 56 のピル・ 167 100 6 3 1501632 0,01 スしる 107 100 57 OPOUIT **え**.プ 1654 0,01 107 57.5 100 4291.244 60.0 621.3 54.68 10.8 Avg TIME END =

| Volume of Liquid     |     | Impinge | Silica Gel<br>Wght. |   |     |
|----------------------|-----|---------|---------------------|---|-----|
| Water Collected      | 1   | 2       | 3                   | 4 | 5   |
| Final                | 242 | 110     | 2                   | - | 269 |
| Initial              |     |         | U)                  |   | 261 |
| Liquid Collected     | 142 | 10      | 2                   |   | 8   |
| Total Vol. Collected |     |         |                     |   | 162 |

| Meter (a) (b) in. Hg Pitots (a) >3/2 in. Hg Orsat (a) >3/2 in. Hg |      |     |                |     |                |  |  |
|-------------------------------------------------------------------|------|-----|----------------|-----|----------------|--|--|
| Orsat Meas.                                                       | Time | CO2 | O <sub>2</sub> | со  | N <sub>2</sub> |  |  |
| 1                                                                 |      |     |                |     |                |  |  |
| 2                                                                 |      |     |                |     | [              |  |  |
| 3                                                                 |      |     |                |     |                |  |  |
| Nozzle Cal                                                        | D,   | D,  | $D_3$          | Ave | rage           |  |  |
|                                                                   |      |     |                |     |                |  |  |

POST TEST LEAK CHECKS

HORIZON AIR MEASUREMENT SERVICES, INC.

000

## 101AL CUMBUSTION ANALYSIS SCAQMD METHOD 25 FIELD SAMPLING DATA SHEET

| Job #: W07-04 2        |   |
|------------------------|---|
| Facility: Brullay L.F. |   |
| Location: bin VAlley   | _ |
| Date: 4/4/05           |   |
| Operator: W            | _ |

| Control Device: Flare #3 |  |
|--------------------------|--|
| Sample Location:         |  |
| Ambient Temp.: →2° = ↑   |  |
| Baro. Pressure: 29.09    |  |

### SAMPLE A

| Tank #: <u>5 1</u>  | Trap #: <u>#4</u> |
|---------------------|-------------------|
| Initial Vacuum: 30" | 2.5 -6026         |
| Final Vacuum: 9"    |                   |
| Start Time: 0910    |                   |

| SAMPLE | В |
|--------|---|
|--------|---|

| Tank #: <u>SD</u>      | Trap #: <u>H 5</u> |
|------------------------|--------------------|
| Initial Vacuum: 30"/   | 2.5 tonn           |
| Final Vacuum: <u></u>  |                    |
| End Time: <u>07.55</u> |                    |

| TIME<br>(min.) | VACUUM<br>("Hg) | FLOW<br>(cc/min) |
|----------------|-----------------|------------------|
| 00             | 30              |                  |
| 05             | ગ્રહ્ય. ક       |                  |
| 10             | 27              |                  |
| 15             | 25 6            |                  |
| 20             | 24,             |                  |
| 25             | 22.5            |                  |
| 30             | 2.\             |                  |
| 35             | 19              |                  |
| 40             | 17              |                  |
| 45             | 15              |                  |
| 50             | 13              |                  |
| 55             |                 | •                |
| 60             | 1               |                  |

| TIME<br>(min.) | VACUUM<br>("Hg) | FLOW<br>(cc/min)                      |
|----------------|-----------------|---------------------------------------|
| 00             | 38              |                                       |
| 05             | 200             |                                       |
| 10             | 26.5            |                                       |
| 15             | 25              |                                       |
| 20             | 23.5            |                                       |
| 25             | T" 27 22        |                                       |
| 30             | درع             | · · · · · · · · · · · · · · · · · · · |
| 35             | 18              |                                       |
| 40             | l'u             | · · · · · · · · · · · · · · · · · · · |
| 45             | 14              |                                       |
| 50             | 12              |                                       |
| 55             | lo              |                                       |
| 60             | 8               |                                       |

# LEAK RATE

Pre Test:

## TOTAL COMBUSTION ANALYSIS SCAQMD METHOD 25 FIELD SAMPLING DATA SHEET

| Job#: W07-042           |
|-------------------------|
| Facility: Bradley LE    |
| Location: Son Valley CA |
| Date: 4/23/0-           |
| Operator: _n_           |
|                         |
| SAMPLE A                |
| SAMPLE A                |

| Control Device: 450 Aur 5 |   |
|---------------------------|---|
| Sample Location: Inlet    | _ |
| Ambient Temp.: VTC9=      | _ |
| Baro. Pressure: 2910      | - |

| Tank #:           | Trap #: | 1<       |
|-------------------|---------|----------|
| Initial Vacuum: _ | 2.6     |          |
| Final Vacuum:     |         |          |
| Start Time:       | 1268    |          |
|                   |         | <u> </u> |
| TIME              | VACUUM  | FLO      |
| (min.)            | ("Hg)   | (cc/mi   |

|                 | SAMPLE B    |
|-----------------|-------------|
| Tank #:         | Trap #: _ \ |
| Initial Vacuum: |             |
| Final Vacuum:   |             |
| End Time:       |             |

| TIME<br>(min.) | VACUUM<br>("Hg) | FLOW<br>(cc/min) |
|----------------|-----------------|------------------|
| 00             | 29              | 106              |
| 05             | ್ಲು             | 100              |
| 10             | 2.ユ             | 100              |
| 15             | 26              | 100              |
| 20             | 25              | 100              |
| 25             | 24              | 100              |
| 30             | スろ              | 100              |
| 35             | 22              | 100              |
| 40             | 21              | 100              |
| 45             | 20              | 100              |
| 50             | 10              | 100              |
| 55             | <b>'</b> 8      |                  |
| 60             | 17-             |                  |

| TIME<br>(min.) | VACUUM<br>("Hg) | FLOW<br>(cc/min) |
|----------------|-----------------|------------------|
| 00             | 29              | 190              |
| 05             | 2-8             | 100              |
| 10             | 27              | 100              |
| 15             | 27              | 100              |
| 20             | 26              | 100              |
| 25             | 24              | 100              |
| 30             | 23              | 100              |
| 35             | عح              | 100              |
| 40             | 21              | 100              |
| 45             | 20              | 100              |
| 50             | <i>i</i> <)     | 100              |
| 55             | 18              | 100              |
| 60             | 17              |                  |

| LEAK | RATE   |
|------|--------|
|      | AVIII. |

Pre Test:

Post Test: \_

**APPENDIX E - Calibration Information** 

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (525) 585-2154 Facsimile: (714)542-6689

# CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER

HORIZON AIR

P.O NUMBER

REFERENCE STANDARD

COMPONENT

NIST SRM NO.

CYLINDER NO.

CONCENTRATION

NITRIC OXIDE

VS.SRM#2629

CC 145830

24.78 ppm

### ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT NITRIC OXIDE ANALYZER MAKE-MODEL-S/N Thermo Env. 42H S/N 42H-44979-273 ANALYTICAL PRINCIPLE CHEMILUMINESCENCE LAST CALIBRATION DATE FIRST ANALYSIS DATE 01/02/05 12/30/04 SECOND ANALYSIS DATE 01/06/05 Z 0.1 R 24.0 C 12.5 CONC. 12.9 Z -0.1 R 24.8 C 12.7 CONC. 12.7 R 24.3 C CONC. 12.9 12.7 R 24.9 Z -0.1 C 12.7 **Z** 0.1 CONC. 12.7 R 24.4 CONC. 12.8 12.7 Z 0.0 C 12.6 CONC. 12.6 R 24.9 U/M ppm MEAN TEST ASSAY 12.9 U/M ppm MEAN TEST ASSAY 12.7

VALUE NOT VALID BELOW 150 PSIG. NOW VALUE FOR REFERENCE ONLY.

THIS CYLINDER NO.

SA 16697

HAS BEEN CERTIFIED ACCORDING TO SECTION

EPA-600/R97/121

CERTIFIED CONCENTRATION

NITRIC OXIDE NITROGEN

12.8 ppm BALANCE

PROCEDURE CERTIFIED ACCURACY

OF TRACEABILITY PROTOCOL NO.

% NIST TRACEABLE

NOx

13.0 ppm

CYLINDER PRESSURE

+ 1

2000 PSIG

CERTIFICATION DATE

01/06/05

EXPIRATION DATE

01/06/07

TERM 24 MONTHS

REV. 9/97

ANALYZED BY

#### IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair

5700 South Alameda Street Los Angeles, CA 90058 Telephone: (323) 585-2154

Facsimile: (714)542-6689

# CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER

HORIZON AIR

P.O NUMBER

REFERENCE STANDARD

COMPONENT NITRIC OXIDE

NIST SRM NO. vs.SRM#2629

CYLINDER NO.

CONCENTRATION

CC 144870

24.81 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT NITRIC OXIDE ANALYZER MAKE-MODEL-S/N Thermo Env. 42H S/N 42H-44979-273 ANALYTICAL PRINCIPLE CHEMILUMINESCENCE LAST CALIBRATION DATE 11/02/04 FIRST ANALYSIS DATE 11/02/04 SECOND ANALYSIS DATE 11/09/04 2 0.0 R 24.1 C 18.8 CONC. 19.4 Z 0.1 R 24.0 C 18.8 CONC. 19.4 R 24.1 C 18.8 CONC. 19.4 Z 0.0 R 24.0 Z 0.1 CONC. 19.5 C 18.9 Z 0.0 C 18.8 CONC. 19.4 R 24.1 Z 0.1 C 18.9 CONC. 19.5 R 24.0 U/M ppm MEAN TEST ASSAY 19.4 U/M ppm MEAN TEST ASSAY 19.5

> VALUE NOT VALID BELOW 150 PSIG. NOX VALUE FOR REFERENCE ONLY. LAST ANALYSIS: NO=20.2 ppm 9/20/02

THIS CYLINDER NO.

CC 150203

EPA-600/R97/121

CERTIFIED CONCENTRATION

HAS BEEN CERTIFIED ACCORDING TO SECTION OF TRACEABILITY PROTOCOL NO.

REV. 9/97

NITRIC OXIDE NITROGEN

19.4 ppm

PROCEDURE

G1

NOx

BALANCE

CERTIFIED ACCURACY

+ 1

% NIST TRACEABLE

20.0 ppm

CYLINDER PRESSURE

1000 PSIG

CERTIFICATION DATE

11/09/04

EXPIRATION DATE

11/09/06

TERM 24 MONTHS

ANALYZED BY

JOSEPH CHARLES ( )

CERTIFIED BY

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

065



Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles, CA 90058

Tel: 323-585-2154 Fax: 714-542-6689

6/9/02

Horizon Air 996 LAWRENCE DR STE 108 NEWBURY PARK, CA 91320 **USA** 

Attention: HORIZON AIR MEASUREMENTS

Praxair Order No. 953055-00

Customer Reference No.

Product Lot/Batch No.

109326903

Praxair Part No.

**EV NINX19MP-AS** 

## **CERTIFICATE OF ANALYSIS** Primary Standard

Requested

Concentration

Certified

Filling Method:

Date of Fill: 9/25/03

Expiration Date: 6/8/06

Analytical

Gravimetric

Analytical

Nitrogen

Component

Nitrogen dioxide (AS NOX)

Cylinder Pressure @70F:

Valve Outlet Connection:

19 ppm

Concentration 18.5 ppm

balance

**Principle** 

Accuracy

Thermo Environmental~42H~Chemiluminescence~Other Analytical Instruments:

Cylinder Style:

1700 psig

122 ft3

660

Cylinder No(s).

Cylinder Volume:

CC 149665

Joseph Charles

Comments: NO=0.5 ppm VALUE IS FOR REFERENCE ONLY.

QA Reviewer:

Phu Tien Nguyen

The gas calibration cylinder standard prepared by Praxair Distribution is considered a certified standard. It is prepared by gravimetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST) or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted.

Key to Analytical Techniques:

A Chemituminescence B Gravimetric C Electrolytic Cell

Pulsed Fluoroescence

Ultra Violet Spectrometry

C Electrolytic Cell

Photolonization HNU

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

HERPAKAI?

Praxair

5700 South Alameda Street Los Angeles, CA 90058 Telephone: (323) 585-2154

Facsimile: (714) 542-6689

# CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER

HORIZON AIR MEASUREMENTS

P.O NUMBER

9565

### REFERENCE STANDARD

COMPONENT

NIST SRM NO.

CYLINDER NO.

CONCENTRATION

CARBON MONOXIDE GMIS

VS.SRM#1678

CC 160092

51.1 ppm

NITRIC OXIDE GMIS

1683b

SA 7757

49.7 ppm

### ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

| 1. COMPONENT | CARBON MONOXI | DE GMIS ANALY     | ZER MAKE-MO | DEL-S/N      | Siemens Ultramat | SE S/N A12-7 | 729             |
|--------------|---------------|-------------------|-------------|--------------|------------------|--------------|-----------------|
| ANALYTICAL   | PRINCIPLE     | NDIR              |             |              | LAST CALIBRA     | ATION DATE   | 03/19/05        |
| FIRST ANALY  | SIS DATE      | 02/20/05          |             |              | SECOND ANAL      | YSIS DATE    | 03/28/05        |
| <b>Z</b> 0.0 | R 51.1        | C 50.6 CONC.      | 50.6        | Z 0.0        | R 51.1           | C 50.8       | CONC. 50.8      |
| R 51.1       | <b>Z</b> 0.0  | C 50.7 CONC.      | 50.7        | R 51.2       | Z 0.0            | C 51.0       | CONC. 50.9      |
| <b>Z</b> 0.0 | C 50.6        | R 51.1 CONC.      | 50.6        | Z 0.0        | C 51.0           | R 51.2       | CONC. 50.9      |
| U/M ppm      |               | MEAN TEST ASSAY   | 50.6 ppm    | U/M ppm      |                  |              | TASSAY 50.9 ppm |
| 2. COMPONENT | NITRIC OXIDE  | GMIS ANALY        | ZER MAKE-MO | DEL-S/N      | BECKMAN 951A S/  |              | gg              |
| ANALYTICAL   | PRINCIPLE     | CHEMILUMINESCENCE |             |              | LAST CALIBRA     |              | 03/01/05        |
| FIRST ANALY  | SIS DATE      | 02/20/05          |             |              | SECOND ANAL      | YSIS DATE    | 03/28/05        |
| <b>Z</b> 0.0 | R 479.6       | C 486.3 CONC.     | 50.4        | <b>Z</b> 0.0 | R 471.0          | C 478.0      | CONC. 50.4      |
| R 479.1      | Z 0.0 🗭       | C 486.3 CONC.     | 50.4        | R 470.4      | Z 0.0            | C 478.3      | CONC, 50.5      |
| <b>Z</b> 0.0 | C 486.6       | R 478.6 CONC.     | 50.5        | <b>Z</b> 0.0 | C 478.6          | R 471.0      | CONC. 50.5      |
| U/M mv       |               | MEAN TEST ASSAY   | 50.4 ppm    | U/M mv       |                  |              | rassay 50.5 ppm |

NOx value solely for reference use. Values not valid below 150 psig.

THIS CYLINDER NO. CC 110519 CERTIFIED CONCENTRATION HAS BEEN CERTIFIED ACCORDING TO SECTION EPA-600/R97/121 CARBON MONOXIDE 50.8 ppm OF TRACEABILITY PROTOCOL NO. Rev. 9/97 NITRIC OXIDE 50.4 ppm **PROCEDURE** G1 NITROGEN BALANCE CERTIFIED ACCURACY % NIST TRACEABLE + 1 NOx 51.1 ppm CYLINDER PRESSURE 2000 PSIG CERTIFICATION DATE 03/28/05 EXPIRATION DATE 03/28/07 TERM 24 MONTHS

ANALYZED BY

CHRIS VU

CERTIFIED BY

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitablity of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (525) 585-2154

Facsimile: (714)542-6689

## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER

HORIZON AIR MEASUREMENTS

P.O NUMBER

8488

### REFERENCE STANDARD

COMPONENT

NIST SRM NO.

CYLINDER NO.

CONCENTRATION

NITRIC OXIDE GMIS CARBON MCNOXIDE GMIS

vsSRM#1684b vs.SRM#1679 CC 136077 CC 160064 99.1 ppm 101.3 ppm

ANALYZER READINGS

R = REFERENCE STANDARD

Z = ZERO GAS

C=GAS CANDIDATE

| 1. COMPONENT NITRIC OXIDE<br>ANALYTICAL PRINCIPLE<br>FIRST ANALYSIS DATE | GMIS<br>CHEMILUMINES<br>11/24/04 |             | MAKE-MODEL-S/N |               | S/N#0101354<br>BRATION DATE<br>IALYSIS DATE | 11/01/04 |
|--------------------------------------------------------------------------|----------------------------------|-------------|----------------|---------------|---------------------------------------------|----------|
| Z 0.0 R 948.0                                                            | C 766.8                          | CONC. 80    | .2 <b>z</b>    | R             | С                                           | CONC.    |
| R 947.2 Z 0.0                                                            | C 765.9                          | CONC. 80    | .1 R           | $\mathbf{z}$  | С                                           | CONC.    |
| Z 0.0 C 767.2                                                            | R 948.0                          | CONC. 80    | .2 <b>Z</b>    | C             | R                                           | CONC.    |
| U/M mV .                                                                 | MEAN TES                         | T ASSAY 80  | .2 U/M m       | V             | MEAN TES                                    | Γ ASSAY  |
| 2. COMPONENT CARBON MONOXI                                               | DE GMIS                          | ANALYZER    | MAKF MODEL-S/N | HORIBA, VIA-5 | 10, S/N 576876015                           |          |
| ANALYTICAL PRINCIPLE                                                     | NDIR                             |             |                | LAST CALI     | BRATION DATE                                | 11/02/04 |
| FIRST ANALYSIS DATE                                                      | 11/24/04                         |             |                | SECOND AN     | ALYSIS DATE                                 |          |
| Z 0.0 k 191.3                                                            | C 80.1                           | CONC. 80    | .1 : Z         | R             | $\mathbf{c}$                                | CONC.    |
| R 101.3 Z 0.0                                                            | C 80.0                           | CONC. 80    | .0 R           | ${f z}$       | C                                           | CONC.    |
| Z 0.0 C 80.1                                                             | R 101.3                          | CONC. 80    | .1 <b>z</b>    | C             | R                                           | CONC.    |
| <b>U/M</b> ppm                                                           | MEAN TES                         | ST ASSAY 80 | .1 U/M p       | pm            | MEAN TES                                    | Γ ASSAY  |

VALUES NOT VALID BELOW 150 PSIG

LAST ASSAY DATE AND RESULTS: 11/23/02, 81.0 ppm NO, 80.4 ppm CO,

81.1 ppm NOx.

THIS CYLINDER NO. CC 138486 CERTIFIED CONCENTRATION EPA-600/R97/121 HAS BEEN CERTIFIED ACCORDING TO SECTION NITRIC OXIDE 80.6 ppm CARBON MONOXIDE 80.2 ppm OF TRACEABILITY PROTOCOL NO. REV 9/97 PROCEDURE NITROGEN BALANCE **G1** CERTIFIED ACCURACY ± 1 % NIST TRACEABLE NOx 81.0 ppm CYLINDER PRESSURE 1500 PSIG CERTIFICATION DATE 11/24/04 11/24/06 TERM 24 MONTHS EXPIRATION DATE

ANALYZED BY

MICHAEL TSANG

CERTIFIED BY

CHRIS VU

IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information exceed the fee established for providing such information.

068

STEEL STATE OF THE STATE OF THE

5700 South Alameda Street Los Angeles, CA 90058 Telephone: (323) 585-2154 Facsimile: (714) 542-6689

3/10/05

Horizon Air 996 Lawrence Dr Ste 108 Newbury Park, CA USA 91320

Attention: Deborah Vacherst

Praxair Order No. 43172600

Customer Reference No.

Product Lot/Batch No. 109434618

> Praxair Part No. **EV NICDOXP1-AS**

## CERTIFICATE OF ANALYSIS **Primary Standard**

Component Carbon dioxide Oxygen Nitrogen

Requested Concentration 12 % balance

Certified Concentration 6.99 % 12.05 % balance

Analytical Analytical Accuracy Principle ±0.02 % abs.

±0.02 % abs.

Mettler~ID5~Gravimetric Analytical Instruments:

148 ft3

Cylinder Style:

Cylinder Pressure @70F: 2000 psig

Cylinder Volume:

Valve Outlet Connection:

590

Cylinder No(s). CC 144975

Filling Method: Gravimetric Date of Fill:

12/11/04

**Expiration Date:** 3/9/08

Analyst:

QA Reviewer:

Tv Triplett

The gas calibration cylinder standard prepared by Praxair Distribution is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST) or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted.

- to Analytical Techniques; Flame lonization with Methanizer
- Gas Chromatography with Flame Photometric
- Gas Chromatography with Reduction Gas Analyzer
- Mass Spectrometry MS or GC/MS Total Hydrocarbon Analyzer Chemiluminescence Pulsed Fluoroescence
- Gas Chromatography with Discharge Ionization
- Detector
  Gas Chromatography with Helium Ionization
  Detector
  Gas Chromatography with Thermal Conductivity
  Detector
- Proprietary Wel Chemica Gravimetric **UV Spectrometry**
- Gas Chromatography with Electrolytic Conductivity
- Gas Chromatography with Methanizer Carbonizer
- Gas Chromatography with Ultrasonic Detector
- Paramagnetic Detector Tube Electrolytic Cell/Electrochemical
- Gas Chromatography with Flame Ionization
- Detector
  Gas Chromatography with Photolonization Detector
- Infrared FTIR or NDIR
- Specific Water Analyzer Odor Photolonization

#### IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (525) 585-2154 Facsimile: (714)542-6689

# CERTIFICATE OF ANALYSIS

CUSTOMER

HORIZON AIR MEASUREMENTS

DATE

05/12/04

P.O NUMBER

REF. NUMBER

67757400

# REQUESTED COMPOSITION

GAS

CONCENTRATION

CARBON DIOXIDE

12 %

OXYGEN

26 %

NITROGEN

BALANCE

ANALYTICAL ACCURACY

±0.02%abs

# ANALYTICAL METHOD

INSTRUMENT

ANALYTICAL PRINCIPLE

Mettler ID5, S/N:1865166

Gravimetric

Mettler ID5, S/N:1865166

Gravimetric

Values not valid below 150 psig.

THIS CYLINDER NO.

SA 20202

CERTIFIED CONCENTRATION

CYLINDER PRESSURE

2000 PSIG

CARBON DIOXIDE

12.01 %

EXPIRATION DATE

12/31/07

OXYGEN

20.01 %

CLASSIFICATION BATCH NUMBER

PRIMARY STANDARD

NITROGEN

BALANCE

N/A

LOT NUMBER

ANALYTICAL ACCURACY

±0.02%abs

109413306

PART NUMBER

NI CDOXP80-AS

CYLINDER SIZE AS CGA 590

152 CFT

ANALYZED BY

CERTIFIED BY

Information contained herein has been prepared at your request by qualified expens within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the enalytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

### Magnehelic Gauge Calibration Data

Range:

0 - 5.0"

Date:

01/05/2004

Calibrated by:

F.Torres

BAROMETRIC PRESURE:

Reference:

0.0-10.0 Manometer

SYSTEM

LEAK CHECKS (Y/N):

Υ

29.12

**POINT** 

LEAK CHECK (Y/N):

Υ

Magnahelic Box

Serial #

R980817MLG44

| MAG  | MAN<br>R1 | MAN<br>R2 | MAN<br>R3 | MEAN  | MEAN/MAG |
|------|-----------|-----------|-----------|-------|----------|
| 1.00 | 1.00      | 1.00      | 1.00      | 1.000 | 1.000    |
| 2.00 | 2.00      | 2.00      | 2.00      | 2.000 | 1.000    |
| 3.00 | 3.00      | 3.00      | 3.00      | 3.000 | 1.000    |
| 4.00 | 4.00      | 4.00      | 4.00      | 4.000 | 1.000    |
| 5.00 | 5.00      | 5.00      | 5.00      | 5.000 | 1.000    |
|      |           |           |           |       |          |

**Correction Factor:** 

1.0000

## Control Box Calibration Data

Date:

01/04/05

Calibrated by:

Bill Jones

Meter Box Number:

5

Barometric Pressure:

28.86

Wet Test Meter Cf:

0.9971

|                           | Gas                    | Volumes                       | Temperatures                |                        |                      | Time        | Y     | H@     |        |
|---------------------------|------------------------|-------------------------------|-----------------------------|------------------------|----------------------|-------------|-------|--------|--------|
| Orifice<br>setting<br>(H) | Wet<br>Test<br>(cu.ft) | Dry Gas<br>Initial<br>(cu.ft) | Dry Gas<br>Final<br>(cu.ft) | DGM<br>Initial<br>(*F) | DGM<br>final<br>(*F) | WTM<br>(°F) | (min) |        |        |
| 0.5                       | 11.222                 | 522.269                       | 533.248                     | 70                     | 76                   | 72          | 26    | 1.0198 | 1.5746 |
| 1.0                       | 11.378                 | 510.809                       | 522.085                     | 71                     | 77                   | 70          | 19    | 1.0107 | 1.6213 |
| 1.5                       | 13.744                 | 496.934                       | 510.587                     | 70                     | 77                   | 69          | 19    | 1.0084 | 1.6612 |
| 2.0                       | 11.609                 | 485.22 <del>9</del>           | 496.707                     | 69                     | 76                   | 69          | 14    | 1.0095 | 1.6896 |
| 3.0                       | 11.294                 | 473.941                       | 485.076                     | 67                     | 74                   | 68          | 11    | 1.0084 | 1.6523 |
| 4.0                       | 11.828                 | 462.225                       | 473.775                     | 64                     | 71                   | 68          | 10    | 1.0094 | 1.6702 |
|                           |                        |                               |                             |                        |                      |             |       |        |        |
|                           |                        |                               |                             |                        |                      | AVERA       | GE    | 1.0110 | 1.6449 |

Reviewed by:



### Control Box Calibration Data

Date:

01/03/05

Calibrated by:

**Bill Jones** 

Meter Box Number:

7

Barometric Pressure:

28.94

Wet Test Meter Cf:

0.9971

|                           | Gas Volumes            |                               |                             |                        | Temperatures         |             |       | Y      | Н@     |
|---------------------------|------------------------|-------------------------------|-----------------------------|------------------------|----------------------|-------------|-------|--------|--------|
| Orifice<br>setting<br>(H) | Wet<br>Test<br>(cu.ft) | Dry Gas<br>Initial<br>(cu.ft) | Dry Gas<br>Final<br>(cu.ft) | DGM<br>Initial<br>(*F) | DGM<br>final<br>(*F) | WTM<br>(°F) | (min) |        |        |
| 0.5                       | 11.017                 | 599.764                       | 610.945                     | 74                     | 76                   | 60          | 25    | 1.0091 | 1.4344 |
| 1.0                       | 10.975                 | 588.339                       | 599.496                     | 74                     | 77                   | 60          | 18    | 1.0070 | 1.4972 |
| 1.5                       | 11.778                 | 576.038                       | 588.000                     | 71                     | 77                   | 60          | 16    | 1.0044 | 1.5443 |
| 2.0                       | 11.830                 | 563.839                       | 575.84 <b>8</b>             | 69                     | 75                   | 60          | 14    | 0.9998 | 1.5685 |
| 3.0                       | 11.475                 | 551.870                       | 563.440                     | 66                     | 73                   | 60          | 11    | 0.9989 | 1.5518 |
| 4.0                       | 12.078                 | 539.424                       | 551.553                     | 58                     | 69                   | 60          | 10    | 0.9895 | 1.5604 |
|                           |                        |                               |                             |                        |                      |             |       |        |        |
|                           |                        |                               |                             |                        |                      | AVERA       | GE    | 1.0015 | 1.5261 |

Reviewed by:



### TYPE S PITOT TUBE INSPECTION DATA FORM

| Tubing di | ameter, 1 | D. 0.362 in. |
|-----------|-----------|--------------|
|-----------|-----------|--------------|

Pitot Tube Assembly Level? Yes



Pitot Tube Openings Damaged? Yes / No A-SIDE PLANE





NOTE: 0. 986 
$$P_A = 0.493$$
 in.

NOTE: 
$$O_{t} = P_{t} = \frac{O_{t} + V_{t}}{O_{t}} = \frac{O_{t}}{O_{t}} = \frac{$$











Level Position to Find y = 1.5 Invel Position to find 8 1.5 2 = A sin y 1.026 in. (< 1/8 in.) H = A sin h = 0.026 in. (< 1/32

Comments

Checked by:

Date: 16-05

Calibration Required?

#### STACK TEMPERATURE SENSOR CALIBRATION DATA- APEX PROBE ASSEMBLIES

Date: 01/10/05

Calibrated by: B. Jones

THERMOCOUPLE

| iD:                                          | ICE WATER |    |          |     |     |     |     | ABSOLUTE<br>T DIFF., % |             |       | BOILING WATER |     |     |     |     | ABSOLUTE<br>T DIFF., % |     |       | BOILING OIL |     |            |     |      | ABSOLUTE<br>T DIFF., % |     |       |     |      |
|----------------------------------------------|-----------|----|----------|-----|-----|-----|-----|------------------------|-------------|-------|---------------|-----|-----|-----|-----|------------------------|-----|-------|-------------|-----|------------|-----|------|------------------------|-----|-------|-----|------|
|                                              | REF       |    |          | TC  |     |     |     |                        | <del></del> | REF   |               |     | TC  |     |     |                        | REF |       |             | TC  |            | •   |      |                        | -   |       |     |      |
|                                              | 1         |    | 3        |     | 1   | 2   | 3   | 1                      | 2           | 3     | 1             | 2 3 | •   | 1   | 2   | 3                      | 1   | 2     | 3           | 1   | 2 3        |     | 1    | 2                      | 3   | 1     | 2   | 3    |
| Stainless Steel Probes 3.1 32 32 32 30 30 30 |           |    |          | 0.4 | 0.4 | 0.4 | 212 | 212                    | 212         | 211   | 211           | 210 | 0.1 | 0,1 | 0.3 | 536                    | 536 | 536   | 534         | 534 | 535        | 0.2 | 0.2  | 0.1                    |     |       |     |      |
| 3-1                                          | 32        | 32 |          | 32  | 30  | -   |     | -,-                    |             |       |               |     |     | 210 | 209 | 210                    | 0.3 | 0.4   | 0.3         | 535 | 534        | 534 | 535  | 533                    | 532 | 0.0   | 0.1 | 0.2  |
| 4-2                                          | 32        | 32 |          | 32  | 31  | 31  | 31  | 0.2                    | 0.2         | 0.2   | 212           | 212 | 212 |     |     |                        |     | 0.3   | 0.3         | 547 | 548        | 548 | 544  | 545                    | 546 | 0.3   | 0.3 | 0,2  |
| 4-3                                          | 32        | 32 |          | 32  | 30  | 31  | 31  | 0.4                    | 0.2         | 0.2   | 212           | 212 | 212 | 211 | 210 | 210                    | 0.1 |       |             | 535 | 535        | 535 | 536  | 534                    | 534 | -0.1  | 0.1 | 0.1  |
| 6-2                                          | 31        | 32 |          | 32  | 31  | 31  | 30  | 0,0                    | 0.2         | 0.4   | 210           | 211 | 211 | 208 | 209 | 210                    | 0.3 | 0.3   | 0.0         |     |            |     | 536  | 535                    |     | -0.1  | 0.1 | 0.1  |
| 6-3                                          | 32        | 32 |          | 32  | 31  | 31  | 31  | 0.2                    | 0.2         | 0.2   | 212           | 212 | 212 | 210 | 210 | 210                    | 0.3 | 0.3   | 0.3         | 535 | 536        | 536 |      |                        | -   |       | 0.1 | 0,3  |
| 6-4                                          | 32        | 31 |          | 32  | 31  | 30  | 30  | 0.2                    | 0.2         | 0.4   | 212           | 212 | 212 | 211 | 211 | 211                    | 0.2 | 0.1   | 0.1         | 535 | 534        | 538 | 536  | 533                    | 535 |       |     |      |
| A6-5                                         | 32        | 32 | !        | 32  | 31  | 31  | 31  | 0.2                    | 0.2         | 0.2   | 212           | 212 | 212 | 211 | 211 | 210                    | 0.1 | 0.1   | 0,3         | 540 | 539        | 539 | 537  | 537                    | 537 |       | 0.2 | 0.2  |
| A8-1                                         | 32        | 32 | :        | 31  | 31  | 30  | 31  | 0.2                    | 0.4         | 0.0   | 212           | 212 | 212 | 211 | 211 | 211                    | 0.1 | 0.1   | 0.1         | 536 | 537        | 537 | 536  | 535                    | 535 | 0,0   | 0.2 | 0,2  |
| A8-2                                         | 32        | 32 | <u>:</u> | 32  | 30  | 31  | 31  | 0.4                    | 0.2         | 0.2   | 212           | 212 | 212 | 210 | 210 | 210                    | 0.3 | 0.3   | 0.3         | 537 | 537        | 535 | 536  | 536                    | 533 | 0.1   | 0.1 | 0.2  |
| A8-3                                         | 32        | 32 | 2        | 32  | 31  | 31  | 31  | 0.2                    | 0.2         | 0.2   | 212           | 212 | 212 | 211 | 211 | 211                    | 0.1 | 0.1   | 0.1         | 550 | 550        | 550 | 549  | 549                    | 550 | 0.1   | 0.1 | 0.0  |
| 10-1                                         | 32        | 32 | 2        | 32  | 31  | 31  | 31  | 0.2                    | 0.2         | 0.2   | 212           | 212 | 212 | 211 | 211 | 211                    | 0.1 | 0.1   | 0.1         | 536 | 537        | 536 | 533  | 533                    | 533 | 0.3   | 0.4 | 0,3  |
| M17-2                                        | 32        | 32 | ,        | 32  | 31  | 31  | 30  | 0.2                    | 0.2         | 0.4   | 212           | 212 | 212 | 211 | 211 | 211                    | 0.1 | 0.1   | 0.1         | 536 | 536        | 535 | 536  | 535                    | 533 | 0.0   | 0.1 | 0.2  |
| M17-3                                        | 32        | 32 |          | 32  | 31  | 31  | 31  | 0.2                    | 0.2         | 0.2   | 212           | 212 | 212 | 210 | 211 | 211                    | 0,3 | 0,1   | 0.1         | 534 | 536        | 535 | 533  | 535                    | 536 | 0.1   | 0.1 | -0.1 |
| Inconei                                      |           |    |          |     |     |     |     |                        |             |       |               |     |     | 545 | 044 | 244                    | 0.3 | 0.1   | 0.1         | 548 | 548        | 548 | 545  | 548                    | 544 | 0.3   | 0.0 | 0.4  |
| 10-1 Inc                                     | 32        | 33 | 2        | 32  | 30  | 31  | 32  | 0.4                    | 0.2         | 0.0   | 212           | 212 | 212 | 210 | 211 | 211                    |     |       |             | 550 | 550        | 550 | 548  | 548                    | 548 | 0.2   | 0,2 | 0.2  |
| 6-1 Inc                                      | 32        | 33 | 2        | 32  | 30  | 30  | 31  | 0.4                    | 0.4         | 0.2   | 212           | 212 | 212 | 211 | 211 | 211                    | 0.1 | 0,1   | 0.1         | 550 | 550        | 300 | J-10 | 0.10                   |     |       |     |      |
| Loose Thermocouple<br>6-5 32 32 32 33 30 31  |           |    | -0.2     | 0.4 | 0.2 | 212 | 212 | 212                    | 209         | 211   | 210           | 0.4 | 0.1 | 0.3 | 532 | 533                    | 533 | 530   | 531         | 530 | 0.2        | 0.2 | 0.3  |                        |     |       |     |      |
| 6-5                                          |           |    |          |     |     | -   | 31  | 0.4                    |             |       | 212           |     | 212 | 210 | 211 | 212                    | 0.3 | 3 0.1 | 0.0         | 548 | 549        | 549 | 545  | 545                    | 545 | 5 0.3 | 0.4 | 0.4  |
| 6-8                                          | 32        |    |          | 32  | 30  |     |     |                        |             |       |               |     |     | 210 |     |                        |     |       |             | 533 | 534        | 536 | 531  | 533                    | 536 | 6 0.2 | 0.1 | 0.0  |
| 7-1                                          | 32        | 3  | 2        | 32  | 30  | 30  | 30  |                        |             |       | 212           |     |     |     |     |                        | _   |       |             | 550 | 550        | 550 | 549  | 549                    | 550 | 0.1   | 0.1 | 0.0  |
| 8-3                                          | 32        | 3  | 2        | 32  | 31  | 31  | 31  | 0.2                    | 0.2         | 2 0.2 | 212           | 212 | 212 | 211 | 211 | 211                    | 0.1 | , U.  | . 0.1       | 550 | <b>400</b> |     |      |                        |     |       |     |      |

Note: If absolute temperature values of the reference thermometer being calibrated and the stack temperature sensors agree within 1.5 percent at each of the three calibration p no correction is needed.

**APPENDIX F - Strip Chart Data** 













# APPENDIX G - Process Data

| <br>- · · · · · · · · · · · · · · · · · · · | Plane #3       |            |                | ere en | ₩  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|----------------|------------|----------------|--------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>RW 1                                    | 5 Jin<br>1907  | gpm        | <u>of</u>      |                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>0720                                    | 1905           | 34<br>34   | 1573<br>1575   |                                            |    | NACONAL PROPERTY OF THE PROPER |
| <br>0930                                    | 1900)<br>1910  | 35<br>35   | 1574           |                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>1005                                    | 1955<br>1982   | 3.7<br>3.7 | 1513           |                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>1015                                    | 1975<br>1978   | 3.6<br>3.0 | 1586           |                                            |    | Management and a state of the s |
| <br>Nic.                                    | 1940.3         | 35<br>3.5  | 1578,4         |                                            |    | Ber Per Levenson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <br>                                        | 1982           | 3.6        | 1578           |                                            |    | Para de la constante de la con |
| <br>1122                                    | 1978           | 3.7<br>37  | 1559<br>1500   |                                            |    | E STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <br>1142                                    |                | 3.7<br>3.1 | 1584           |                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>1210                                    | 1985<br>1975   | 37         | 1594<br>1594   | •                                          |    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <br>1220<br>NE.                             | 1969<br>1977,3 | 2639       | 1587<br>1569.6 |                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | 1976           | 3,4        | 1570           |                                            |    | Economic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                |            |                |                                            |    | A Section 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                             |                |            |                |                                            | 70 | 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                             |                |            |                |                                            |    | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                             |                |            |                |                                            |    | Annual An |
| i                                           |                |            |                |                                            |    | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# **APPENDIX H - Permit to Operate**



## SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

Page 1
Permit No.
P67268
A/N 425259

ID 50310

#### PERMIT TO OPERATE

This initial permit must be renewed ANNUALLY unless the equipment is moved, or changes ownership. If the billing for the annual renewal fee (Rule 301.f) is not received by the expiration date, contact the District.

Legal Owner

or Operator:

WASTE MGMT DISPOSAL&RECYCLING SERVS INC

9081 TUJUNGA AVE SUN VALLEY, CA 91352

Equipment Location:

9227 TUJUNGA AVE, SUN VALLEY, CA 91352-1542

#### **Equipment Description:**

LANDFILL GAS FLARING SYSTEM NO. 3 CONSISTING OF:

- INLET SEPARATOR
- 2. PARTICULATE SCRUBBER, LANDFILL GAS, JOHN ZINK, 2'-6" DIA. X 13'-7" H.
- TWO BLOWERS, LANDFILL GAS, EACH 75 H.P.
- 4. FLARE NO. 3, 8'-0" DIA. X 50'-0" H, WITH A MULTUET BURNER, A PROPANE GAS PILOT, ELECTRIC IGNITER, UV FLAME SENSOR, THERMOCOUPLE WITH TEMPERATURE INDICATOR AND RECORDER, AUTOMATIC SHUTDOWN AND ALARM SYSTEM, AUTOMATIC COMBUSTION AIR REGULATING SYSTEM, TEMPERATURE CONTROLLER, FLAME ARRESTOR AND FIVE CONDENSATE INJECTION GUNS.

#### Conditions:

- OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW.
- 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES.
- THIS EQUIPMENT SHALL BE OPERATED AND MAINTAINED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION.
- 4. THE FLARE SHALL BE EQUIPPED WITH A TEMPERATURE INDICATOR AND RECORDER WHICH MEASURES AND RECORDS THE GAS TEMPERATURE (IN DEGREES F) IN THE FLARE STACK. THE TEMPERATURE INDICATOR AND RECORDER SHALL OPERATE WHENEVER THE FLARE IS IN OPERATION.



#### SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

Page 2 Permit No. F67268 A/N 425259

#### **PERMIT TO OPERATE**

#### CONTINUATION OF PERMIT TO OPERATE

- 5. WHENEVER THE FLARE IS IN OPERATION, EXCEPT DURING START-UP, A TEMPERATURE OF NOT LESS THAN 1400 DEGREES F, AS MEASURED BY THE TEMPERATURE INDICATOR AND RECORDER, SHALL BE MAINTAINED IN THE FLARE STACK. THE THERMOCOUPLE USED TO MEASURE THE TEMPERATURE SHALL BE ABOVE THE FLAME ZONE AND AT LEAST 3 FEET BELOW THE TOP OF THE FLARE SHROUD AND AT LEAST 0.6 SECONDS DOWNSTREAM OF THE BURNER.
- 6. A FLOW INDICATING AND RECORDING DEVICE SHALL BE MAINTAINED IN THE LANDFILL GAS SUPPLY LINE TO THE FLARE TO MEASURE AND RECORD THE QUANTITY OF LANDFILL GAS (IN SCFM) BEING BURNED.
- 7. THE HEAT RELEASE FROM THE LANDFILL GAS BURNED IN THE FLARE SHALL NOT EXCEED 62 MM BTU/HR.
- 8. THE BTU CONTENT OF THE LANDFILL GAS SHALL BE MEASURED USING AN INSTRUMENT APPROVED BY THE AQMD AND RECORDED DAILY.
- 9. WHENEVER THE CONDENSATE INJECTION STATION IS IN OPERATION, NOT MORE THAN 5 GALLONS PER MINUTE OF CONDENSATE SHALL BE INJECTED INTO THE FLARE.
- 10. A FLOW INDICATOR AND RECORDER SHALL BE INSTALLED AT EACH CONDENSATE INJECTION STATION AND SHALL OPERATE WHENEVER THE CONDENSATE INJECTION STATION IS IN OPERATION.
- 11. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF DAY.
- 12. THE FLARE SHALL BE EQUIPPED WITH A FLARE FAILURE ALARM WITH AN AUTOMATIC BLOWER SHUT-OFF SYSTEM.
- 13. THE FLARE FAILURE ALARM WITH THE AUTOMATIC BLOWER SHUT-OFF SYSTEM SHALL BE TESTED ANNUALLY FOR PROPER OPERATION AND RESULTS RECORDED.
- 14. A PRESSURE DIFFERENTIAL INDICATOR SHALL BE MAINTAINED ACROSS THE FLAME ARRESTOR.
- 15. A SUFFICIENT NUMBER OF SIGHT GLASS WINDOWS SHALL BE INSTALLED IN THE FLARE TO ALLOW VISUAL INSPECTION OF THE FLAME AND THERMOCOUPLE LOCATION WITHIN THE FLARE AT ALL TIMES. ADEQUATE AND SAFE ACCESS SHALL BE PROVIDED FOR ALL PORTS UPON REQUEST BY AQMD PERSONNEL.
- A SET OF FOUR SAMPLING PORTS SHALL BE INSTALLED IN THE FLARE SHROUD AND LOCATED AT LEAST TWO FEET ABOVE THE FLAME ZONE AND AT LEAST THREE FEET BELOW THE TOP OF THE FLARE SHROUD. EACH PORT SHALL BE INSTALLED AT 90 DEGREES APART AND SHALL CONSIST OF FOUR INCH COUPLINGS. ADEQUATE AND SAFE ACCESS TO ALL TEST PORTS SHALL BE PROVIDED BY THE APPLICANT WITHIN 24 HOURS OF A REQUEST BY THE AQMD TO CONDUCT A TEST.



#### SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

Page 3 Permit No. F67268 A/N 425259

#### PERMIT TO OPERATE

#### CONTINUATION OF PERMIT TO OPERATE

- 17. A SAMPLING PORT, OR OTHER METHOD APPROVED BY THE AQMD, SHALL BE INSTALLED AT THE INLET GAS LINE TO THE FLARE.
- 18. THE SKIN TEMPERATURE OF THE FLARE SHROUD WITHIN FOUR FEET OF ALL THE SOURCE TEST PORTS SHALL NOT EXCEED 250 DEGREES F. IF A HEAT SHIELD IS REQUIRED TO MEET THIS REQUIREMENT, ITS DESIGN SHALL BE APPROVED BY THE AQMD PRIOR TO CONSTRUCTION. THE HEAT SHIELD, IF REQUIRED TO MEET THE TEMPERATURE REQUIREMENT, SHALL BE IN PLACE WHENEVER A SOURCE TEST IS CONDUCTED BY THE AQMD.
- 19. THE APPLICANT SHALL CONDUCT A SOURCE TEST ANNUALLY OR PER THE APPROVED 1150.1 COMPLIANCE PLAN. THE TEST SHALL BE PERFORMED IN ACCORDANCE WITH AQMD APPROVED TEST PROCEDURES. THE TEST SHALL INCLUDE, BUT MAY NOT BE LIMITED TO, A TEST OF THE FLARE FOR:
  - A. LANDFILL GAS COMPOSITION AND HEATING VALUE (INLET)
  - B. LANDFILL GAS FLOW RATE, SCFM (INLET)
  - C. TOTAL SULFUR COMPOUNDS AS H2S, PPMV (INLET)
  - D. TEMPERATURE, F (EXHAUST)
  - E. FLOW RATE, DSCFM (EXHAUST)
  - F. NOX, LBS/HR AND LBS/MMBTU (EXHAUST)
  - G. SOX, LBS/HR (EXHAUST)
  - H. CO, LBS.HR (EXHAUST)
  - I. PM, LBS/HR AND GR/DSCF (EXHAUST)
  - J. TOTAL NON-METHANE ORGANICS, LBS/HR (INLET AND EXHAUST)
  - K. RULE 1150.1 TOXIC COMPOUNDS, PPMV (INLET AND EXHAUST)
- 20. EMISSIONS OF NOX FROM THE FLARE SHALL NOT EXCEED 0.06 LBS PER MILLION BTU.
- 21. EMISSIONS RESULTING FROM FLARE NO. 3 SHALL NOT EXCEED THE FOLLOWING:

ROG 0.66 LBS/HR

NOX 2.58 LBS/HR

SOX 3.16 LBS/HR

CO 2.37 LBS/HR

PM10 1.31 LBS/HR

- 22. ANY BREAKDOWN OR MALFUNCTION OF THE LANDFILL GAS FLARE RESULTING IN THE EMISSION OF RAW LANDFILL GAS SHALL BE REPORTED TO THE AQMD WITHIN ONE HOUR OF OCCURRENCE, AND IMMEDIATE REMEDIAL MEASURES SHALL BE UNDERTAKEN TO CORRECT THE PROBLEM AND PREVENT FURTHER EMISSIONS INTO THE ATMOSPHERE.
- 23. ALL RECORDS SHALL BE KEPT FOR A PERIOD OF AT LEAST TWO (2) YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. A RECORD OF THE HOURS OF FLARE OPERATION SHALL BE INCLUDED.



# SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91766

Page 4 Permit No. F67268 A/N 425259

#### **PERMIT TO OPERATE**

### CONTINUATION OF PERMIT TO OPERATE

- 24. FLARE START-UP TIME SHALL NOT EXCEED 30 MINUTES. ANY OUTAGE THAT RESULTS IN THE SHUTDOWN OF THE FLARE SHALL NOT BE CONSIDERED A BREAKDOWN PROVIDING NO EMISSION OF RAW LANDFILL GAS OCCURS.
- 25. MITIGATION MEASURES, OTHER THAN THOSE INDICATED IN THESE CONDITIONS, WHICH ARE DEEMED APPROPRIATE BY AQMD PERSONNEL AS NECESSARY TO PROTECT THE COMFORT, REPOSE, HEALTH OR SAFETY OF THE PUBLIC, SHALL BE IMPLEMENTED UPON REQUEST.

#### NOTICE

IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR COPY SHALL BE POSTED ON OR WITHIN 8 METERS OF THE EQUIPMENT.

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT CANNOT BE CONSIDERED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUES OF OTHER GOVERNMENT AGENCIES.

**EXECUTIVE OFFICER** 

Derrie on Bailey

By Dorris M.Bailey/TK01 3/18/2004

The second No. Orange Constitution of kwd normaned Principal Section 1994 personal second